These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1288 related articles for article (PubMed ID: 34889892)

  • 21. CRISPR/Cas9-Mediated Gene Editing Revolutionizes the Improvement of Horticulture Food Crops.
    Wang T; Zhang C; Zhang H; Zhu H
    J Agric Food Chem; 2021 Nov; 69(45):13260-13269. PubMed ID: 33734711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetically modified crop regulations: scope and opportunity using the CRISPR-Cas9 genome editing approach.
    Gupta S; Kumar A; Patel R; Kumar V
    Mol Biol Rep; 2021 May; 48(5):4851-4863. PubMed ID: 34114124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/Cas9 to generate plant immunity against pathogen.
    Zaynab M; Sharif Y; Fatima M; Afzal MZ; Aslam MM; Raza MF; Anwar M; Raza MA; Sajjad N; Yang X; Li S
    Microb Pathog; 2020 Apr; 141():103996. PubMed ID: 31988004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement.
    Guo Y; Zhao G; Gao X; Zhang L; Zhang Y; Cai X; Yuan X; Guo X
    Planta; 2023 Jul; 258(2):36. PubMed ID: 37395789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome editing for crop improvement: Challenges and opportunities.
    Abdallah NA; Prakash CS; McHughen AG
    GM Crops Food; 2015; 6(4):183-205. PubMed ID: 26930114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conventional and Molecular Techniques from Simple Breeding to Speed Breeding in Crop Plants: Recent Advances and Future Outlook.
    Ahmar S; Gill RA; Jung KH; Faheem A; Qasim MU; Mubeen M; Zhou W
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32276445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adoption of CRISPR-Cas for crop production: present status and future prospects.
    Akanmu AO; Asemoloye MD; Marchisio MA; Babalola OO
    PeerJ; 2024; 12():e17402. PubMed ID: 38860212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.
    Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A
    J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent progress in CRISPR/Cas9-based genome editing for enhancing plant disease resistance.
    Boubakri H
    Gene; 2023 May; 866():147334. PubMed ID: 36871676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges.
    Haque E; Taniguchi H; Hassan MM; Bhowmik P; Karim MR; Śmiech M; Zhao K; Rahman M; Islam T
    Front Plant Sci; 2018; 9():617. PubMed ID: 29868073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9 genome editing in wheat: enhancing quality and productivity for global food security-a review.
    Elsharawy H; Refat M
    Funct Integr Genomics; 2023 Aug; 23(3):265. PubMed ID: 37541970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Revisiting CRISPR/Cas-mediated crop improvement: Special focus on nutrition.
    Kaul T; Sony SK; Verma R; Motelb KFA; Prakash AT; Eswaran M; Bharti J; Nehra M; Kaul R
    J Biosci; 2020; 45():. PubMed ID: 33361628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: Current status, future perspectives, and associated challenges.
    Eş I; Gavahian M; Marti-Quijal FJ; Lorenzo JM; Mousavi Khaneghah A; Tsatsanis C; Kampranis SC; Barba FJ
    Biotechnol Adv; 2019; 37(3):410-421. PubMed ID: 30779952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Progresses of CRISPR/Cas9 genome editing in forage crops.
    Ul Haq SI; Zheng D; Feng N; Jiang X; Qiao F; He JS; Qiu QS
    J Plant Physiol; 2022 Dec; 279():153860. PubMed ID: 36371870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops.
    Karkute SG; Singh AK; Gupta OP; Singh PM; Singh B
    Front Plant Sci; 2017; 8():1635. PubMed ID: 28970844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants.
    Chennakesavulu K; Singh H; Trivedi PK; Jain M; Yadav SR
    Plant Cell Rep; 2022 Mar; 41(3):815-831. PubMed ID: 33742256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advancements in CRISPR/Cas technology for accelerated crop improvement.
    Das D; Singha DL; Paswan RR; Chowdhury N; Sharma M; Reddy PS; Chikkaputtaiah C
    Planta; 2022 Apr; 255(5):109. PubMed ID: 35460444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants.
    Zaidi SS; Mahas A; Vanderschuren H; Mahfouz MM
    Genome Biol; 2020 Nov; 21(1):289. PubMed ID: 33256828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 65.