These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34889935)

  • 1. Electronic and optical properties of hydrogen-terminated biphenylene nanoribbons: a first-principles study.
    Shen H; Yang R; Xie K; Yu Z; Zheng Y; Zhang R; Chen L; Wu BR; Su WS; Wang S
    Phys Chem Chem Phys; 2021 Dec; 24(1):357-365. PubMed ID: 34889935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic and transport properties and physical field coupling effects for net-Y nanoribbons.
    Hu JK; Zhang ZH; Fan ZQ; Zhou RL
    Nanotechnology; 2019 Nov; 30(48):485703. PubMed ID: 31426048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel hybrid monolayers Si
    Ahmed T; Subrina S
    Phys Chem Chem Phys; 2022 Apr; 24(16):9475-9491. PubMed ID: 35388812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic Band Gap Tuning and Calculations of Mechanical Strength and Deformation Potential by Applying Uniaxial Strain on MX
    Devi A; Kumar N; Thakur A; Kumar A; Singh A; Ahluwalia PK
    ACS Omega; 2022 Nov; 7(44):40054-40066. PubMed ID: 36385828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon phosphide nanosheets and nanoribbons: insights on modulating their electronic properties by first principles calculations.
    Chen T; Li H; Zhu Y; Liu D; Zhou G; Xu L
    Phys Chem Chem Phys; 2020 Oct; 22(39):22520-22528. PubMed ID: 33000812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biphenylene nanoribbon-based 3D metallic and ductile carbon allotrope.
    Sun W; Shen Y; Ni D; Wang Q
    Nanoscale; 2022 Mar; 14(10):3801-3807. PubMed ID: 35191443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structure and stability of semiconducting graphene nanoribbons.
    Barone V; Hod O; Scuseria GE
    Nano Lett; 2006 Dec; 6(12):2748-54. PubMed ID: 17163699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biphenylene monolayer as a two-dimensional nonbenzenoid carbon allotrope: a first-principles study.
    Bafekry A; Faraji M; Fadlallah MM; Jappor HR; Karbasizadeh S; Ghergherehchi M; Gogova D
    J Phys Condens Matter; 2021 Oct; 34(1):. PubMed ID: 34571501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability, elastic properties, and electronic structure of germanane nanoribbons.
    Dong S; Chen CQ
    J Phys Condens Matter; 2015 Jun; 27(24):245303. PubMed ID: 26030722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Even-odd oscillation of bandgaps in GeP
    Li R; Huang X; Ma X; Zhu Z; Li C; Xia C; Zeng Z; Jia Y
    Phys Chem Chem Phys; 2018 Dec; 21(1):275-280. PubMed ID: 30520926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational investigation on structural and physical properties of AIN nanosheets and nanoribbons.
    Li Y; Yang Z; Chen Z; Zhou Z
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7200-3. PubMed ID: 21137897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A first principles investigation on the structural, mechanical, electronic, and catalytic properties of biphenylene.
    Luo Y; Ren C; Xu Y; Yu J; Wang S; Sun M
    Sci Rep; 2021 Sep; 11(1):19008. PubMed ID: 34561479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structure of BSb defective monolayers and nanoribbons.
    Ersan F; Gökoğlu G; Aktürk E
    J Phys Condens Matter; 2014 Aug; 26(32):325303. PubMed ID: 25049113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of Three-Dimensional Metallic Biphenylene Networks for Na-Ion Battery Anodes with a Record High Capacity.
    Obeid MM; Ni D; Du PH; Sun Q
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32043-32055. PubMed ID: 35816506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Electronic Structure of Armchair MoS
    Zhang L; Wan L; Yu Y; Wang B; Xu F; Wei Y; Zhao Y
    J Phys Chem C Nanomater Interfaces; 2015; 119(38):22164-22171. PubMed ID: 26331336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable magnetic and electronic properties of armchair BeN
    Zhu M; Zhou W; Yang J; Zhou J; Li Q
    Phys Chem Chem Phys; 2023 Feb; 25(6):5029-5036. PubMed ID: 36722879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A first-principles study on zigzag phosphorene nanoribbons passivated by iron-group atoms.
    Chen N; Wang Y; Mu Y; Fan Y; Li SD
    Phys Chem Chem Phys; 2017 Sep; 19(37):25441-25445. PubMed ID: 28900647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin filtering controller induced by phase transitions in fluorographane.
    Sun C; Jiang Y; Wang Y; Liu XC; Wu Y; Ding Y; Zhang G
    RSC Adv; 2021 Nov; 11(57):35718-35725. PubMed ID: 35492789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.