These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34890133)

  • 1. Transferability of Geometric Patterns from Protein Self-Interactions to Protein-Ligand Interactions.
    Koehl A; Jagota M; Erdmann-Pham DD; Fung A; Song YS
    Pac Symp Biocomput; 2022; 27():22-33. PubMed ID: 34890133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GIANT: pattern analysis of molecular interactions in 3D structures of protein-small ligand complexes.
    Kasahara K; Kinoshita K
    BMC Bioinformatics; 2014 Jan; 15():12. PubMed ID: 24423161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data Mining Meets Machine Learning: A Novel ANN-based Multi-body Interaction Docking Scoring Function (MBI-score) Based on Utilizing Frequent Geometric and Chemical Patterns of Interfacial Atoms in Native Protein-ligand Complexes.
    Khashan R; Tropsha A; Zheng W
    Mol Inform; 2022 Aug; 41(8):e2100248. PubMed ID: 35142086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A D3R prospective evaluation of machine learning for protein-ligand scoring.
    Sunseri J; Ragoza M; Collins J; Koes DR
    J Comput Aided Mol Des; 2016 Sep; 30(9):761-771. PubMed ID: 27592011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Session introduction: AI-driven Advances in Modeling of Protein Structure.
    Fidelis K; Grudinin S
    Pac Symp Biocomput; 2022; 27():1-9. PubMed ID: 34890131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of protein-ligand interactions from paired protein sequence motifs and ligand substructures.
    Greenside P; Hillenmeyer M; Kundaje A
    Pac Symp Biocomput; 2018; 23():20-31. PubMed ID: 29218866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometric Interaction Graph Neural Network for Predicting Protein-Ligand Binding Affinities from 3D Structures (GIGN).
    Yang Z; Zhong W; Lv Q; Dong T; Yu-Chian Chen C
    J Phys Chem Lett; 2023 Mar; 14(8):2020-2033. PubMed ID: 36794930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Open-ComBind: harnessing unlabeled data for improved binding pose prediction.
    McNutt AT; Koes DR
    J Comput Aided Mol Des; 2023 Dec; 38(1):3. PubMed ID: 38062207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. InteractionGraphNet: A Novel and Efficient Deep Graph Representation Learning Framework for Accurate Protein-Ligand Interaction Predictions.
    Jiang D; Hsieh CY; Wu Z; Kang Y; Wang J; Wang E; Liao B; Shen C; Xu L; Wu J; Cao D; Hou T
    J Med Chem; 2021 Dec; 64(24):18209-18232. PubMed ID: 34878785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha shape and Delaunay triangulation in studies of protein-related interactions.
    Zhou W; Yan H
    Brief Bioinform; 2014 Jan; 15(1):54-64. PubMed ID: 23193202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical and machine learning approaches to predicting protein-ligand interactions.
    Colwell LJ
    Curr Opin Struct Biol; 2018 Apr; 49():123-128. PubMed ID: 29452923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction.
    Cang Z; Wei GW
    Int J Numer Method Biomed Eng; 2018 Feb; 34(2):. PubMed ID: 28677268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probabilistic prediction of contacts in protein-ligand complexes.
    Hakulinen R; Puranen S; Lehtonen JV; Johnson MS; Corander J
    PLoS One; 2012; 7(11):e49216. PubMed ID: 23155467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Overview of Scoring Functions Used for Protein-Ligand Interactions in Molecular Docking.
    Li J; Fu A; Zhang L
    Interdiscip Sci; 2019 Jun; 11(2):320-328. PubMed ID: 30877639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GPDOCK: highly accurate docking strategy for metalloproteins based on geometric probability.
    Wang K
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leveraging nonstructural data to predict structures and affinities of protein-ligand complexes.
    Paggi JM; Belk JA; Hollingsworth SA; Villanueva N; Powers AS; Clark MJ; Chemparathy AG; Tynan JE; Lau TK; Sunahara RK; Dror RO
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34921117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PLIC: protein-ligand interaction clusters.
    Anand P; Nagarajan D; Mukherjee S; Chandra N
    Database (Oxford); 2014; 2014(0):bau029. PubMed ID: 24763918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aromatic interactions at the ligand-protein interface: Implications for the development of docking scoring functions.
    Brylinski M
    Chem Biol Drug Des; 2018 Feb; 91(2):380-390. PubMed ID: 28816025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Impact of Crystallographic Data for the Development of Machine Learning Models to Predict Protein-Ligand Binding Affinity.
    Veit-Acosta M; de Azevedo Junior WF
    Curr Med Chem; 2021 Oct; 28(34):7006-7022. PubMed ID: 33568025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.