These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 34890183)

  • 1. Designer Heme Proteins: Achieving Novel Function with Abiological Heme Analogues.
    Lemon CM; Marletta MA
    Acc Chem Res; 2021 Dec; 54(24):4565-4575. PubMed ID: 34890183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversifying the functions of heme proteins with non-porphyrin cofactors.
    Lemon CM
    J Inorg Biochem; 2023 Sep; 246():112282. PubMed ID: 37320889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrole-Substituted Fluorescent Heme Proteins.
    Lemon CM; Marletta MA
    Inorg Chem; 2021 Feb; 60(4):2716-2729. PubMed ID: 33513009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Escherichia coli expression-based approach for porphyrin substitution in heme proteins.
    Winter MB; Woodward JJ; Marletta MA
    Methods Mol Biol; 2013; 987():95-106. PubMed ID: 23475670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porphyrin-substituted H-NOX proteins as high-relaxivity MRI contrast agents.
    Winter MB; Klemm PJ; Phillips-Piro CM; Raymond KN; Marletta MA
    Inorg Chem; 2013 Mar; 52(5):2277-9. PubMed ID: 23394479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrole-protein interactions in H-NOX and HasA.
    Lemon CM; Nissley AJ; Latorraca NR; Wittenborn EC; Marletta MA
    RSC Chem Biol; 2022 May; 3(5):571-581. PubMed ID: 35656484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo biosynthesis of a nonnatural cobalt porphyrin cofactor in
    Perkins LJ; Weaver BR; Buller AR; Burstyn JN
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
    Mirts EN; Bhagi-Damodaran A; Lu Y
    Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
    Oohora K; Onoda A; Hayashi T
    Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.
    Key HM; Dydio P; Clark DS; Hartwig JF
    Nature; 2016 Jun; 534(7608):534-7. PubMed ID: 27296224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noble-Metal Substitution in Hemoproteins: An Emerging Strategy for Abiological Catalysis.
    Natoli SN; Hartwig JF
    Acc Chem Res; 2019 Feb; 52(2):326-335. PubMed ID: 30693758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratiometric Oxygen Sensing with H-NOX Protein Conjugates.
    Lemon CM; Hanley D; Batka AE; Marletta MA
    Inorg Chem; 2022 Jul; 61(27):10521-10532. PubMed ID: 35766625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of Heme Enzymes with Artificial Metalloporphyrinoids.
    Oohora K; Hayashi T
    Methods Enzymol; 2016; 580():439-54. PubMed ID: 27586344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Heme-Acquisition Protein Reconstructed with a Cobalt 5-Oxaporphyrinium Cation and Its Growth-Inhibition Activity Toward Multidrug-Resistant Pseudomonas aeruginosa.
    Takiguchi A; Sakakibara E; Sugimoto H; Shoji O; Shinokubo H
    Angew Chem Int Ed Engl; 2022 Feb; 61(7):e202112456. PubMed ID: 34913238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational control of cofactors in nature - the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles.
    Senge MO; MacGowan SA; O'Brien JM
    Chem Commun (Camb); 2015 Dec; 51(96):17031-63. PubMed ID: 26482230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ru-porphyrin protein scaffolds for sensing O2.
    Winter MB; McLaurin EJ; Reece SY; Olea C; Nocera DG; Marletta MA
    J Am Chem Soc; 2010 Apr; 132(16):5582-3. PubMed ID: 20373741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Escherichia coli expression-based method for heme substitution.
    Woodward JJ; Martin NI; Marletta MA
    Nat Methods; 2007 Jan; 4(1):43-5. PubMed ID: 17187078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of modified and artificial cofactors into naturally occurring protein scaffolds.
    Oohora K; Hayashi T
    Methods Mol Biol; 2014; 1216():251-63. PubMed ID: 25213420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Method for the Incorporation of Heme Cofactors into Recombinant Proteins Using Escherichia coli Nissle 1917.
    Fiege K; Querebillo CJ; Hildebrandt P; Frankenberg-Dinkel N
    Biochemistry; 2018 May; 57(19):2747-2755. PubMed ID: 29658696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.