These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34890204)

  • 1. Accelerated Simulations of Molecular Systems through Learning of Effective Dynamics.
    Vlachas PR; Zavadlav J; Praprotnik M; Koumoutsakos P
    J Chem Theory Comput; 2022 Jan; 18(1):538-549. PubMed ID: 34890204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multitask Machine Learning of Collective Variables for Enhanced Sampling of Rare Events.
    Sun L; Vandermause J; Batzner S; Xie Y; Clark D; Chen W; Kozinsky B
    J Chem Theory Comput; 2022 Apr; 18(4):2341-2353. PubMed ID: 35274958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective variable discovery and enhanced sampling using autoencoders: Innovations in network architecture and error function design.
    Chen W; Tan AR; Ferguson AL
    J Chem Phys; 2018 Aug; 149(7):072312. PubMed ID: 30134681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and enhanced sampling of molecular systems with smooth and nonlinear data-driven collective variables.
    Hashemian B; Millán D; Arroyo M
    J Chem Phys; 2013 Dec; 139(21):214101. PubMed ID: 24320358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular latent space simulators.
    Sidky H; Chen W; Ferguson AL
    Chem Sci; 2020 Aug; 11(35):9459-9467. PubMed ID: 34094212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular enhanced sampling with autoencoders: On-the-fly collective variable discovery and accelerated free energy landscape exploration.
    Chen W; Ferguson AL
    J Comput Chem; 2018 Sep; 39(25):2079-2102. PubMed ID: 30368832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-time methods for molecular dynamics simulations: Markov State Models and Milestoning.
    Narayan B; Yuan Y; Fathizadeh A; Elber R; Buchete NV
    Prog Mol Biol Transl Sci; 2020; 170():215-237. PubMed ID: 32145946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective variable discovery in the age of machine learning: reality, hype and everything in between.
    Bhakat S
    RSC Adv; 2022 Aug; 12(38):25010-25024. PubMed ID: 36199882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized Langevin dynamics: construction and numerical integration of non-Markovian particle-based models.
    Jung G; Hanke M; Schmid F
    Soft Matter; 2018 Nov; 14(46):9368-9382. PubMed ID: 30427043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear discovery of slow molecular modes using state-free reversible VAMPnets.
    Chen W; Sidky H; Ferguson AL
    J Chem Phys; 2019 Jun; 150(21):214114. PubMed ID: 31176319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovering Collective Variables of Molecular Transitions via Genetic Algorithms and Neural Networks.
    Hooft F; Pérez de Alba Ortíz A; Ensing B
    J Chem Theory Comput; 2021 Apr; 17(4):2294-2306. PubMed ID: 33662202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Markovian Weighted Ensemble Milestoning (M-WEM): Long-Time Kinetics from Short Trajectories.
    Ray D; Stone SE; Andricioaei I
    J Chem Theory Comput; 2022 Jan; 18(1):79-95. PubMed ID: 34910499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anncolvar: Approximation of Complex Collective Variables by Artificial Neural Networks for Analysis and Biasing of Molecular Simulations.
    Trapl D; Horvacanin I; Mareska V; Ozcelik F; Unal G; Spiwok V
    Front Mol Biosci; 2019; 6():25. PubMed ID: 31058167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence.
    Davtyan A; Dama JF; Voth GA; Andersen HC
    J Chem Phys; 2015 Apr; 142(15):154104. PubMed ID: 25903863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the nanoscale viscoelasticity of fluids by bridging non-Markovian fluctuating hydrodynamics and molecular dynamics simulations.
    Voulgarakis NK; Satish S; Chu JW
    J Chem Phys; 2009 Dec; 131(23):234115. PubMed ID: 20025322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the advantages of exploiting memory in Markov state models for biomolecular dynamics.
    Cao S; Montoya-Castillo A; Wang W; Markland TE; Huang X
    J Chem Phys; 2020 Jul; 153(1):014105. PubMed ID: 32640825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism.
    Li Z; Bian X; Li X; Karniadakis GE
    J Chem Phys; 2015 Dec; 143(24):243128. PubMed ID: 26723613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluctuating hydrodynamics for multiscale modeling and simulation: energy and heat transfer in molecular fluids.
    Shang BZ; Voulgarakis NK; Chu JW
    J Chem Phys; 2012 Jul; 137(4):044117. PubMed ID: 22852607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chasing Collective Variables Using Autoencoders and Biased Trajectories.
    Belkacemi Z; Gkeka P; Lelièvre T; Stoltz G
    J Chem Theory Comput; 2022 Jan; 18(1):59-78. PubMed ID: 34965117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.