These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34890610)

  • 41. In-situ determination of field-scale NAPL mass transfer coefficients: Performance, simulation and analysis.
    Mobile M; Widdowson M; Stewart L; Nyman J; Deeb R; Kavanaugh M; Mercer J; Gallagher D
    J Contam Hydrol; 2016 Apr; 187():31-46. PubMed ID: 26855386
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.
    Page JW; Soga K; Illangasekare T
    J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media.
    Yoon H; Valocchi AJ; Werth CJ
    J Contam Hydrol; 2007 Mar; 90(3-4):159-83. PubMed ID: 17184872
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review.
    Liu JW; Wei KH; Xu SW; Cui J; Ma J; Xiao XL; Xi BD; He XS
    Sci Total Environ; 2021 Feb; 756():144142. PubMed ID: 33302075
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multicomponent NAPL source dissolution: evaluation of mass-transfer coefficients.
    Mobile MA; Widdowson MA; Gallagher DL
    Environ Sci Technol; 2012 Sep; 46(18):10047-54. PubMed ID: 22873644
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands.
    Lekmine G; Sookhak Lari K; Johnston CD; Bastow TP; Rayner JL; Davis GB
    J Contam Hydrol; 2017 Jan; 196():30-42. PubMed ID: 27979461
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of a surfactant-stabilized emulsion to deliver 1-butanol for density-modified displacement of trichloroethene.
    Ramsburg CA; Pennell KD; Kibbey TC; Hayes KF
    Environ Sci Technol; 2003 Sep; 37(18):4246-53. PubMed ID: 14524460
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrodynamically-enhanced transfer of dense non-aqueous phase liquids into an aqueous reservoir.
    Valletti N; Budroni MA; Albanese P; Marchettini N; Sanchez-Dominguez M; Lagzi I; Rossi F
    Water Res; 2023 Mar; 231():119608. PubMed ID: 36709564
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of aqueous film forming foams on the solubility and mobilization of non-aqueous phase liquid contaminants in quartz sands.
    Liao S; Saleeba Z; Bryant JD; Abriola LM; Pennell KD
    Water Res; 2021 May; 195():116975. PubMed ID: 33677241
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A mechanistic study of griseofulvin dissolution into surfactant solutions under laminar flow conditions.
    Rao VM; Lin M; Larive CK; Southard MZ
    J Pharm Sci; 1997 Oct; 86(10):1132-7. PubMed ID: 9344170
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mass flux from a non-aqueous phase liquid pool considering spontaneous expansion of a discontinuous gas phase.
    Mumford KG; Smith JE; Dickson SE
    J Contam Hydrol; 2008 Jun; 98(3-4):85-96. PubMed ID: 18448191
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of domain shapes on the morphological evolution of nonaqueous-phase-liquid dissolution fronts in fluid-saturated porous media.
    Zhao C; Hobbs BE; Ord A
    J Contam Hydrol; 2012 Sep; 138-139():123-40. PubMed ID: 22892525
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selective solubilization of polycyclic aromatic hydrocarbons from multicomponent nonaqueous-phase liquids into nonionic surfactant micelles.
    Bernardez LA; Ghoshal S
    Environ Sci Technol; 2004 Nov; 38(22):5878-87. PubMed ID: 15573585
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A pore scale investigation of crude oil distribution and removal from homogeneous porous media during surfactant-induced remediation.
    Ghosh J; Tick GR
    J Contam Hydrol; 2013 Dec; 155():20-30. PubMed ID: 24113292
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modelling the dissolution of non-aqueous phase liquid blobs in sphere packings.
    Dalla E; Hilpert M; Miller C; Pitea D
    Ann Chim; 2003; 93(7-8):631-8. PubMed ID: 12940596
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Temperature influence on the NAPL-water interfacial area between 10 °C and 60 °C for trichloroethylene.
    Koproch N; Dahmke A; Schwardt A; Köber R
    J Contam Hydrol; 2022 Feb; 245():103932. PubMed ID: 34952400
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced-solubilization and dissolution of multicomponent DNAPL from homogeneous porous media.
    Tick G; Slavic DR; Akyol NH; Zhang Y
    J Contam Hydrol; 2022 May; 247():103967. PubMed ID: 35247695
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of simplified mass transfer models to simulate the impacts of source zone architecture on nonaqueous phase liquid dissolution in heterogeneous porous media.
    Zhang C; Yoon H; Werth CJ; Valocchi AJ; Basu NB; Jawitz JW
    J Contam Hydrol; 2008 Nov; 102(1-2):49-60. PubMed ID: 18579257
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An environmental screening model to assess the consequences to soil and groundwater from railroad-tank-car spills of light non-aqueous phase liquids.
    Yoon H; Werth CJ; Barkan CP; Schaeffer DJ; Anand P
    J Hazard Mater; 2009 Jun; 165(1-3):332-44. PubMed ID: 19036513
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Remediation of NAPL source zones: lessons learned from field studies at Hill and Dover AFB.
    McCray JE; Tick GR; Jawitz JW; Gierke JS; Brusseau ML; Falta RW; Knox RC; Sabatini DA; Annable MD; Harwell JH; Wood AL
    Ground Water; 2011; 49(5):727-44. PubMed ID: 21299555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.