These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 34890816)
1. Modification strategies of membranes with enhanced Anti-biofouling properties for wastewater Treatment: A review. Kim A; Hak Kim J; Patel R Bioresour Technol; 2022 Feb; 345():126501. PubMed ID: 34890816 [TBL] [Abstract][Full Text] [Related]
2. Modification of polyvinylidene fluoride membrane by silver nanoparticles-graphene oxide hybrid nanosheet for effective membrane biofouling mitigation. Yu Y; Yang Y; Yu L; Koh KY; Chen JP Chemosphere; 2021 Apr; 268():129187. PubMed ID: 33360934 [TBL] [Abstract][Full Text] [Related]
3. Antibiofouling performance and mechanisms of a modified polyvinylidene fluoride membrane in an MBR for wastewater treatment: Role of silver@silica nanopollens. Zhang X; Guo Y; Wang T; Wu Z; Wang Z Water Res; 2020 Jun; 176():115749. PubMed ID: 32247996 [TBL] [Abstract][Full Text] [Related]
4. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Ben-Sasson M; Lu X; Bar-Zeev E; Zodrow KR; Nejati S; Qi G; Giannelis EP; Elimelech M Water Res; 2014 Oct; 62():260-70. PubMed ID: 24963888 [TBL] [Abstract][Full Text] [Related]
5. Biogenic silver nanoparticles (bio-Ag 0) decrease biofouling of bio-Ag 0/PES nanocomposite membranes. Zhang M; Zhang K; De Gusseme B; Verstraete W Water Res; 2012 May; 46(7):2077-87. PubMed ID: 22330259 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and Characterization of Silver Nanoparticles-Filled Polyethersulfone Membranes for Antibacterial and Anti-Biofouling Application. Rehan ZA; Gzara L; Khan SB; Alamry KA; El-Shahawi MS; Albeirutty MH; Figoli A; Drioli E; Asiri AM Recent Pat Nanotechnol; 2016; 10(3):231-251. PubMed ID: 27136930 [TBL] [Abstract][Full Text] [Related]
7. Improved Anti-Biofouling Performance of Thin -Film Composite Forward-Osmosis Membranes Containing Passive and Active Moieties. Qi L; Hu Y; Liu Z; An X; Bar-Zeev E Environ Sci Technol; 2018 Sep; 52(17):9684-9693. PubMed ID: 30074383 [TBL] [Abstract][Full Text] [Related]
8. Toward Sustainable Tackling of Biofouling Implications and Improved Performance of TFC FO Membranes Modified by Ag-MOF Nanorods. Seyedpour SF; Dadashi Firouzjaei M; Rahimpour A; Zolghadr E; Arabi Shamsabadi A; Das P; Akbari Afkhami F; Sadrzadeh M; Tiraferri A; Elliott M ACS Appl Mater Interfaces; 2020 Aug; 12(34):38285-38298. PubMed ID: 32846472 [TBL] [Abstract][Full Text] [Related]
9. Biofouling Mitigation in Forward Osmosis Using Graphene Oxide Functionalized Thin-Film Composite Membranes. Perreault F; Jaramillo H; Xie M; Ude M; Nghiem LD; Elimelech M Environ Sci Technol; 2016 Jun; 50(11):5840-8. PubMed ID: 27160324 [TBL] [Abstract][Full Text] [Related]
10. Antimicrobial Nanoparticles Mediated Prevention and Control of Membrane Biofouling in Water and Wastewater Treatment: Current Trends and Future Perspectives. Samal S; Misra M; Rangarajan V; Chattopadhyay S Appl Biochem Biotechnol; 2023 Sep; 195(9):5458-5477. PubMed ID: 37093532 [TBL] [Abstract][Full Text] [Related]
11. Combined effects of Pseudomonas quinolone signal-based quorum quenching and graphene oxide on the mitigation of biofouling and improvement of the application potential for the thin-film composite membrane. Li Y; Yang Y; Feng Y; Pu J; Hou LA Sci Total Environ; 2021 Mar; 760():143348. PubMed ID: 33162137 [TBL] [Abstract][Full Text] [Related]
12. Cysteamine- and graphene oxide-mediated copper nanoparticle decoration on reverse osmosis membrane for enhanced anti-microbial performance. Ma W; Soroush A; Luong TVA; Rahaman MS J Colloid Interface Sci; 2017 Sep; 501():330-340. PubMed ID: 28463764 [TBL] [Abstract][Full Text] [Related]
13. Mitigation of membrane biofouling via immobilizing Ag-MOFs on composite membrane surface for extractive membrane bioreactor. Yuan G; Tian Y; Wang B; You X; Liao Y Water Res; 2022 Feb; 209():117940. PubMed ID: 34923442 [TBL] [Abstract][Full Text] [Related]
14. Improvement of Antifouling and Antimicrobial Abilities on Silver-Carbon Nanotube Based Membranes under Electrochemical Assistance. Fan X; Liu Y; Wang X; Quan X; Chen S Environ Sci Technol; 2019 May; 53(9):5292-5300. PubMed ID: 30933494 [TBL] [Abstract][Full Text] [Related]
15. Surface modification of Fe Song J; Xu D; Han Y; Zhu X; Liu Z; Li G; Liang H Water Res; 2023 Dec; 247():120795. PubMed ID: 37931358 [TBL] [Abstract][Full Text] [Related]
16. Recent advances in mitigating membrane biofouling using carbon-based materials. Wu Y; Xia Y; Jing X; Cai P; Igalavithana AD; Tang C; Tsang DCW; Ok YS J Hazard Mater; 2020 Jan; 382():120976. PubMed ID: 31454608 [TBL] [Abstract][Full Text] [Related]
17. Graphene Oxide-Functionalized Membranes: The Importance of Nanosheet Surface Exposure for Biofouling Resistance. Cheng W; Lu X; Kaneda M; Zhang W; Bernstein R; Ma J; Elimelech M Environ Sci Technol; 2020 Jan; 54(1):517-526. PubMed ID: 31756099 [TBL] [Abstract][Full Text] [Related]
18. Novel antifouling and antibacterial polyethersulfone membrane prepared by embedding nitrogen-doped carbon dots for efficient salt and dye rejection. Koulivand H; Shahbazi A; Vatanpour V; Rahmandoost M Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110787. PubMed ID: 32279812 [TBL] [Abstract][Full Text] [Related]
19. Recent advancement on water filtration membranes: Navigating biofouling challenges. Alnumani A; Abutaleb A; Park B; Mubashir M Environ Res; 2024 Jun; 251(Pt 1):118615. PubMed ID: 38437904 [TBL] [Abstract][Full Text] [Related]
20. Advancing Strategies of Biofouling Control in Water-Treated Polymeric Membranes. Zhang H; Zhu S; Yang J; Ma A Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]