These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 34890912)
1. Glycine adversely affects enhanced biological phosphorus removal. Tian Y; Chen H; Chen L; Deng X; Hu Z; Wang C; Wei C; Qiu G; Wuertz S Water Res; 2022 Feb; 209():117894. PubMed ID: 34890912 [TBL] [Abstract][Full Text] [Related]
2. Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources. Qiu G; Zuniga-Montanez R; Law Y; Thi SS; Nguyen TQN; Eganathan K; Liu X; Nielsen PH; Williams RBH; Wuertz S Water Res; 2019 Feb; 149():496-510. PubMed ID: 30476778 [TBL] [Abstract][Full Text] [Related]
3. Global warming readiness: Feasibility of enhanced biological phosphorus removal at 35 °C. Qiu G; Law Y; Zuniga-Montanez R; Deng X; Lu Y; Roy S; Thi SS; Hoon HY; Nguyen TQN; Eganathan K; Liu X; Nielsen PH; Williams RBH; Wuertz S Water Res; 2022 Jun; 216():118301. PubMed ID: 35364353 [TBL] [Abstract][Full Text] [Related]
4. A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems. Stokholm-Bjerregaard M; McIlroy SJ; Nierychlo M; Karst SM; Albertsen M; Nielsen PH Front Microbiol; 2017; 8():718. PubMed ID: 28496434 [TBL] [Abstract][Full Text] [Related]
5. Carbon uptake bioenergetics of PAOs and GAOs in full-scale enhanced biological phosphorus removal systems. Chen L; Chen H; Hu Z; Tian Y; Wang C; Xie P; Deng X; Zhang Y; Tang X; Lin X; Li B; Wei C; Qiu G Water Res; 2022 Jun; 216():118258. PubMed ID: 35320769 [TBL] [Abstract][Full Text] [Related]
6. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater. Tu Y; Schuler AJ Environ Sci Technol; 2013 Apr; 47(8):3816-24. PubMed ID: 23477409 [TBL] [Abstract][Full Text] [Related]
7. Effect of Lactate on the Microbial Community and Process Performance of an EBPR System. Rubio-Rincón FJ; Welles L; Lopez-Vazquez CM; Abbas B; van Loosdrecht MCM; Brdjanovic D Front Microbiol; 2019; 10():125. PubMed ID: 30833933 [No Abstract] [Full Text] [Related]
8. Unexpected phosphorous removal in a Candidatus_Competibacter and Defluviicoccus dominated reactor. Song X; Yu D; Qiu Y; Qiu C; Xu L; Zhao J; Wang X Bioresour Technol; 2022 Feb; 345():126540. PubMed ID: 34902483 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the polyphosphate-accumulating organism population in the full-scale simultaneous chemical phosphorus removal system. Wang B; Jiao E; Guo Y; Zhang L; Meng Q; Zeng W; Peng Y Environ Sci Pollut Res Int; 2020 Oct; 27(30):37877-37886. PubMed ID: 32617817 [TBL] [Abstract][Full Text] [Related]
10. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Oehmen A; Yuan Z; Blackall LL; Keller J Biotechnol Bioeng; 2005 Jul; 91(2):162-8. PubMed ID: 15892052 [TBL] [Abstract][Full Text] [Related]
11. The impact of pH on the anaerobic and aerobic metabolism of Tetrasphaera-enriched polyphosphate accumulating organisms. Nguyen PY; Marques R; Wang H; Reis MAM; Carvalho G; Oehmen A Water Res X; 2023 May; 19():100177. PubMed ID: 37008369 [TBL] [Abstract][Full Text] [Related]
12. Metabolic characteristics of a glycogen-accumulating organism in Defluviicoccus cluster II revealed by comparative genomics. Wang Z; Guo F; Mao Y; Xia Y; Zhang T Microb Ecol; 2014 Nov; 68(4):716-28. PubMed ID: 24889288 [TBL] [Abstract][Full Text] [Related]
13. Butyrate can support PAOs but not GAOs in tropical climates. Wang L; Liu J; Oehmen A; Le C; Geng Y; Zhou Y Water Res; 2021 Apr; 193():116884. PubMed ID: 33556694 [TBL] [Abstract][Full Text] [Related]
14. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. Oehmen A; Saunders AM; Vives MT; Yuan Z; Keller J J Biotechnol; 2006 May; 123(1):22-32. PubMed ID: 16293332 [TBL] [Abstract][Full Text] [Related]
15. High-temperature EBPR process: the performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus "Accumulibacter phosphatis". Ong YH; Chua ASM; Fukushima T; Ngoh GC; Shoji T; Michinaka A Water Res; 2014 Nov; 64():102-112. PubMed ID: 25046374 [TBL] [Abstract][Full Text] [Related]
16. Candidatus Accumulibacter use fermentation products for enhanced biological phosphorus removal. Chen L; Wei G; Zhang Y; Wang K; Wang C; Deng X; Li Y; Xie X; Chen J; Huang F; Chen H; Zhang B; Wei C; Qiu G Water Res; 2023 Nov; 246():120713. PubMed ID: 37839225 [TBL] [Abstract][Full Text] [Related]
17. Abundance and ecophysiology of Defluviicoccus spp., glycogen-accumulating organisms in full-scale wastewater treatment processes. Burow LC; Kong Y; Nielsen JL; Blackall LL; Nielsen PH Microbiology (Reading); 2007 Jan; 153(Pt 1):178-85. PubMed ID: 17185546 [TBL] [Abstract][Full Text] [Related]
18. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)? Zhou Y; Pijuan M; Zeng RJ; Lu H; Yuan Z Water Res; 2008 May; 42(10-11):2361-8. PubMed ID: 18222522 [TBL] [Abstract][Full Text] [Related]
19. The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms. Oehmen A; Teresa Vives M; Lu H; Yuan Z; Keller J Water Res; 2005 Sep; 39(15):3727-37. PubMed ID: 16098556 [TBL] [Abstract][Full Text] [Related]
20. Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States. Gu AZ; Saunders A; Neethling JB; Stensel HD; Blackall LL Water Environ Res; 2008 Aug; 80(8):688-98. PubMed ID: 18751532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]