BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 34890975)

  • 1. Integrated genome and tissue engineering enables screening of cancer vulnerabilities in physiologically relevant perfusable ex vivo cultures.
    Hu M; Lei XY; Larson JD; McAlonis M; Ford K; McDonald D; Mach K; Rusert JM; Wechsler-Reya RJ; Mali P
    Biomaterials; 2022 Jan; 280():121276. PubMed ID: 34890975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A CRISPR Platform for Targeted In Vivo Screens.
    Maranda V; Zhang Y; Vizeacoumar FS; Freywald A; Vizeacoumar FJ
    Methods Mol Biol; 2023; 2614():397-409. PubMed ID: 36587138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR Screens Provide a Comprehensive Assessment of Cancer Vulnerabilities but Generate False-Positive Hits for Highly Amplified Genomic Regions.
    Munoz DM; Cassiani PJ; Li L; Billy E; Korn JM; Jones MD; Golji J; Ruddy DA; Yu K; McAllister G; DeWeck A; Abramowski D; Wan J; Shirley MD; Neshat SY; Rakiec D; de Beaumont R; Weber O; Kauffmann A; McDonald ER; Keen N; Hofmann F; Sellers WR; Schmelzle T; Stegmeier F; Schlabach MR
    Cancer Discov; 2016 Aug; 6(8):900-13. PubMed ID: 27260157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale CRISPR pooled screens.
    Sanjana NE
    Anal Biochem; 2017 Sep; 532():95-99. PubMed ID: 27261176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide CRISPR screens for the identification of therapeutic targets for cancer treatment.
    Xue VW; Wong SCC; Cho WCS
    Expert Opin Ther Targets; 2020 Nov; 24(11):1147-1158. PubMed ID: 32893711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 for cancer research and therapy.
    Zhan T; Rindtorff N; Betge J; Ebert MP; Boutros M
    Semin Cancer Biol; 2019 Apr; 55():106-119. PubMed ID: 29673923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel CRISPR-Cas9 screens clarify impacts of p53 on screen performance.
    Bowden AR; Morales-Juarez DA; Sczaniecka-Clift M; Agudo MM; Lukashchuk N; Thomas JC; Jackson SP
    Elife; 2020 May; 9():. PubMed ID: 32441252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial gene suppression improves identification of cancer vulnerabilities when CRISPR-Cas9 knockout is pan-lethal.
    Krill-Burger JM; Dempster JM; Borah AA; Paolella BR; Root DE; Golub TR; Boehm JS; Hahn WC; McFarland JM; Vazquez F; Tsherniak A
    Genome Biol; 2023 Aug; 24(1):192. PubMed ID: 37612728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New tools for old drugs: Functional genetic screens to optimize current chemotherapy.
    Gerhards NM; Rottenberg S
    Drug Resist Updat; 2018 Jan; 36():30-46. PubMed ID: 29499836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guide RNA Design for Genome-Wide CRISPR Screens in Yarrowia lipolytica.
    Ramesh A; Wheeldon I
    Methods Mol Biol; 2021; 2307():123-137. PubMed ID: 33847986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens.
    Hart T; Tong AHY; Chan K; Van Leeuwen J; Seetharaman A; Aregger M; Chandrashekhar M; Hustedt N; Seth S; Noonan A; Habsid A; Sizova O; Nedyalkova L; Climie R; Tworzyanski L; Lawson K; Sartori MA; Alibeh S; Tieu D; Masud S; Mero P; Weiss A; Brown KR; Usaj M; Billmann M; Rahman M; Constanzo M; Myers CL; Andrews BJ; Boone C; Durocher D; Moffat J
    G3 (Bethesda); 2017 Aug; 7(8):2719-2727. PubMed ID: 28655737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR therapeutic tools for complex genetic disorders and cancer (Review).
    Baliou S; Adamaki M; Kyriakopoulos AM; Spandidos DA; Panayiotidis M; Christodoulou I; Zoumpourlis V
    Int J Oncol; 2018 Aug; 53(2):443-468. PubMed ID: 29901119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of drug-inducible CRISPR-Cas9 systems for large-scale functional screening.
    Sun N; Petiwala S; Wang R; Lu C; Hu M; Ghosh S; Hao Y; Miller CP; Chung N
    BMC Genomics; 2019 Mar; 20(1):225. PubMed ID: 30890156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target Discovery for Precision Medicine Using High-Throughput Genome Engineering.
    Guo X; Chitale P; Sanjana NE
    Adv Exp Med Biol; 2017; 1016():123-145. PubMed ID: 29130157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced gene templates for supervised analysis of scale-limited CRISPR-Cas9 fitness screens.
    Vinceti A; Perron U; Trastulla L; Iorio F
    Cell Rep; 2022 Jul; 40(4):111145. PubMed ID: 35905712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical cancer vulnerabilities identified by unbiased CRISPR/Cas9 screens inform on efficient cancer Immunotherapy.
    Potts MA; McDonald JA; Sutherland KD; Herold MJ
    Eur J Immunol; 2020 Dec; 50(12):1871-1884. PubMed ID: 33202035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplex enCas12a screens detect functional buffering among paralogs otherwise masked in monogenic Cas9 knockout screens.
    Dede M; McLaughlin M; Kim E; Hart T
    Genome Biol; 2020 Oct; 21(1):262. PubMed ID: 33059726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications.
    Li Y; Glass Z; Huang M; Chen ZY; Xu Q
    Biomaterials; 2020 Mar; 234():119711. PubMed ID: 31945616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iCSDB: an integrated database of CRISPR screens.
    Choi A; Jang I; Han H; Kim MS; Choi J; Lee J; Cho SY; Jun Y; Lee C; Kim J; Lee B; Lee S
    Nucleic Acids Res; 2021 Jan; 49(D1):D956-D961. PubMed ID: 33137185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guide RNA library-based CRISPR screens in plants: opportunities and challenges.
    Pan C; Li G; Bandyopadhyay A; Qi Y
    Curr Opin Biotechnol; 2023 Feb; 79():102883. PubMed ID: 36603502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.