These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 3489101)

  • 21. Intracellular Cl activity changes of frog skin.
    Biber TU; Drewnowska K; Baumgarten CM; Fisher RS
    Am J Physiol; 1985 Sep; 249(3 Pt 2):F432-8. PubMed ID: 3876035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions of TPA and insulin on Na+ transport across frog skin.
    Civan MM; Peterson-Yantorno K; George K; O'Brien TG
    Am J Physiol; 1989 Mar; 256(3 Pt 1):C569-78. PubMed ID: 2646943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dependence of intracellular Na+ concentration on apical and basolateral membrane Na+ influx in frog skin.
    Stoddard JS; Helman SI
    Am J Physiol; 1985 Nov; 249(5 Pt 2):F662-71. PubMed ID: 3877468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cross-talk between ATP-regulated K+ channels and Na+ transport via cellular metabolism in frog skin principal cells.
    Urbach V; Van Kerkhove E; Maguire D; Harvey BJ
    J Physiol; 1996 Feb; 491 ( Pt 1)(Pt 1):99-109. PubMed ID: 9011625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of basolateral ouabain, amphotericin B, cyanide and potassium on amiloride noise during voltage clamp of Rana pipiens skin support sodium-amiloride competition.
    Hoshiko T; Grossman RA; Machlup S
    Biochim Biophys Acta; 1988 Jul; 942(1):186-98. PubMed ID: 2454664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insulin action on electrophysiological properties of apical and basolateral membranes of frog skin.
    Schoen HF; Erlij D
    Am J Physiol; 1987 Apr; 252(4 Pt 1):C411-7. PubMed ID: 3551625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane.
    Nielsen R
    Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sodium transport and intracellular sodium activity in cultured human nasal epithelium.
    Willumsen NJ; Boucher RC
    Am J Physiol; 1991 Aug; 261(2 Pt 1):C319-31. PubMed ID: 1872374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrophysiology and noise analysis of K+-depolarized epithelia of frog skin.
    Tang J; Abramcheck FJ; Van Driessche W; Helman SI
    Am J Physiol; 1985 Nov; 249(5 Pt 1):C421-9. PubMed ID: 2415000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of intracellular signals on Na+/K(+)-ATPase pump activity in the frog skin epithelium.
    Ehrenfeld J; Lacoste I; Harvey BJ
    Biochim Biophys Acta; 1992 Apr; 1106(1):197-208. PubMed ID: 1374642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intracellular pH controls cell membrane Na+ and K+ conductances and transport in frog skin epithelium.
    Harvey BJ; Thomas SR; Ehrenfeld J
    J Gen Physiol; 1988 Dec; 92(6):767-91. PubMed ID: 3265144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microelectrode studies of the active Na transport pathway of frog skin.
    Helman SI; Fisher RS
    J Gen Physiol; 1977 May; 69(5):571-604. PubMed ID: 301179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular ion activities in frog skin in relation to external sodium and effects of amiloride and/or ouabain.
    Harvey BJ; Kernan RP
    J Physiol; 1984 Apr; 349():501-17. PubMed ID: 6610743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ion transport by mitochondria-rich cells in toad skin.
    Larsen EH; Ussing HH; Spring KR
    J Membr Biol; 1987; 99(1):25-40. PubMed ID: 3123695
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction between the basolateral K+ and apical Na+ conductances in Necturus urinary bladder.
    Demarest JR; Finn AL
    J Gen Physiol; 1987 Apr; 89(4):563-80. PubMed ID: 2438372
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sodium flux ratio through the amiloride-sensitive entry pathway in frog skin.
    Benos DJ; Hyde BA; Latorre R
    J Gen Physiol; 1983 May; 81(5):667-85. PubMed ID: 6602864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Blockage of Na+ currents through poorly selective cation channels in the apical membrane of frog skin and toad urinary bladder.
    Van Driessche W; Desmedt L; Simaels J
    Pflugers Arch; 1991 Apr; 418(3):193-203. PubMed ID: 1649987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Correlation between transepithelial Na+ transport and transepithelial water movement across isolated frog skin (Rana esculenta).
    Nielsen R
    J Membr Biol; 1997 Sep; 159(1):61-9. PubMed ID: 9309211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Basis for apparent saturation kinetics of Na+ influx in freshwater hyperregulators.
    Kirschner LB
    Am J Physiol; 1988 Jun; 254(6 Pt 2):R984-8. PubMed ID: 3260078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of isoproterenol on Na+ and K+ transport in frog skin epithelium.
    Cox TC; Grieme M; Woods R
    Biochim Biophys Acta; 1990 Feb; 1022(1):41-8. PubMed ID: 2302401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.