BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34891019)

  • 21. A review on the removal of antibiotics by carbon nanotubes.
    Cong Q; Yuan X; Qu J
    Water Sci Technol; 2013; 68(8):1679-87. PubMed ID: 24185047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorptive performance of activated carbon reused from household drinking water filter for hexavalent chromium-contaminated water.
    Sangkarak S; Phetrak A; Kittipongvises S; Kitkaew D; Phihusut D; Lohwacharin J
    J Environ Manage; 2020 Oct; 272():111085. PubMed ID: 32854889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes.
    Ahmad J; Naeem S; Ahmad M; Usman ARA; Al-Wabel MI
    J Environ Manage; 2019 Sep; 246():214-228. PubMed ID: 31176983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HKUST-1 derived carbon adsorbents for tetracycline removal with excellent adsorption performance.
    Pan J; Bai X; Li Y; Yang B; Yang P; Yu F; Ma J
    Environ Res; 2022 Apr; 205():112425. PubMed ID: 34843724
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments.
    da Silva Alves DC; Healy B; Pinto LAA; Cadaval TRS; Breslin CB
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33498661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amino-functionalized mesoporous silica-magnetic graphene oxide nanocomposites as water-dispersible adsorbents for the removal of the oxytetracycline antibiotic from aqueous solutions: adsorption performance, effects of coexisting ions, and natural organic matter.
    Prarat P; Hongsawat P; Punyapalakul P
    Environ Sci Pollut Res Int; 2020 Feb; 27(6):6560-6576. PubMed ID: 31873904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineered macroalgal and microalgal adsorbents: Synthesis routes and adsorptive performance on hazardous water contaminants.
    Lee XJ; Ong HC; Ooi J; Yu KL; Tham TC; Chen WH; Ok YS
    J Hazard Mater; 2022 Feb; 423(Pt A):126921. PubMed ID: 34523506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: a review.
    Nguyen LM; Nguyen NTT; Nguyen TTT; Nguyen TT; Nguyen DTC; Tran TV
    Environ Chem Lett; 2022; 20(3):1929-1963. PubMed ID: 35369683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effectiveness of MOFs for the Removal of Pharmaceuticals from Aquatic Environments: A Review Focused on Antibiotics Removal.
    Hooriabad Saboor F; Nasirpour N; Shahsavari S; Kazemian H
    Chem Asian J; 2022 Feb; 17(4):e202101105. PubMed ID: 34941022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spiramycin adsorption behavior on activated bentonite, activated carbon and natural phosphate in aqueous solution.
    El Maataoui Y; El M'rabet M; Maaroufi A; Dahchour A
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):15953-15972. PubMed ID: 30963430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents.
    Awual MR; Hossain MA; Shenashen MA; Yaita T; Suzuki S; Jyo A
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):421-30. PubMed ID: 22562349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review.
    Tchinsa A; Hossain MF; Wang T; Zhou Y
    Chemosphere; 2021 Dec; 284():131393. PubMed ID: 34323783
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites.
    de Sousa DNR; Insa S; Mozeto AA; Petrovic M; Chaves TF; Fadini PS
    Chemosphere; 2018 Aug; 205():137-146. PubMed ID: 29689527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of caffeine, nicotine and amoxicillin from (waste)waters by various adsorbents. A review.
    Anastopoulos I; Pashalidis I; Orfanos AG; Manariotis ID; Tatarchuk T; Sellaoui L; Bonilla-Petriciolet A; Mittal A; Núñez-Delgado A
    J Environ Manage; 2020 May; 261():110236. PubMed ID: 32148306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review.
    Garba ZN; Zhou W; Lawan I; Xiao W; Zhang M; Wang L; Chen L; Yuan Z
    J Environ Manage; 2019 Jul; 241():59-75. PubMed ID: 30981144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sorptive removal of methylene blue from water by magnetic multi-walled carbon nanotube composites.
    Song G; Li A; Shi Y; Li W; Wang H; Wang C; Li R; Ding G
    Environ Sci Pollut Res Int; 2021 Aug; 28(30):41268-41282. PubMed ID: 33779907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Developments in the Removal of Dyes from Water by Starch-Based Adsorbents.
    Ihsanullah I; Bilal M; Jamal A
    Chem Rec; 2022 Jul; 22(7):e202100312. PubMed ID: 35102677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent perspective of antibiotics remediation: A review of the principles, mechanisms, and chemistry controlling remediation from aqueous media.
    Nkoh JN; Oderinde O; Etafo NO; Kifle GA; Okeke ES; Ejeromedoghene O; Mgbechidinma CL; Oke EA; Raheem SA; Bakare OC; Ogunlaja OO; Sindiku O; Oladeji OS
    Sci Total Environ; 2023 Jul; 881():163469. PubMed ID: 37061067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of radionuclide
    Wang J; Xu B
    J Environ Radioact; 2023 Dec; 270():107267. PubMed ID: 37598575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of methylene blue on low-cost adsorbents: a review.
    Rafatullah M; Sulaiman O; Hashim R; Ahmad A
    J Hazard Mater; 2010 May; 177(1-3):70-80. PubMed ID: 20044207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.