BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34891059)

  • 1. The activity of alkaline phosphatase in breast cancer exosomes simplifies the biosensing design.
    Moura SL; Pallarès-Rusiñol A; Sappia L; Martí M; Pividori MI
    Biosens Bioelectron; 2022 Feb; 198():113826. PubMed ID: 34891059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical immunosensing of nanovesicles as biomarkers for breast cancer.
    Moura SL; Martín CG; Martí M; Pividori MI
    Biosens Bioelectron; 2020 Feb; 150():111882. PubMed ID: 31786017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix Effect in the Isolation of Breast Cancer-Derived Nanovesicles by Immunomagnetic Separation and Electrochemical Immunosensing-A Comparative Study.
    Lima Moura S; Martì M; Pividori MI
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32054015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplex detection and characterization of breast cancer exosomes by magneto-actuated immunoassay.
    Moura SL; Martín CG; Martí M; Pividori MI
    Talanta; 2020 May; 211():120657. PubMed ID: 32070615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Genosensing of Overexpressed GAPDH Transcripts in Breast Cancer Exosomes.
    Pallares-Rusiñol A; Moura SL; Martí M; Pividori MI
    Anal Chem; 2023 Jan; 95(4):2487-2495. PubMed ID: 36683335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of alkaline phosphatase activity and of carcinoembryonic antigen by using a multicolor liquid crystal biosensor based on the controlled growth of silver nanoparticles.
    Zhou CH; Zi QJ; Wang J; Zhao WY; Cao Q
    Mikrochim Acta; 2018 Dec; 186(1):25. PubMed ID: 30564907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Colorimetric Biosensor for Sensitive Exosome Detection via Enzyme-Induced Etching of Gold Nanobipyramid@MnO
    Zhang Y; Jiao J; Wei Y; Wang D; Yang C; Xu Z
    Anal Chem; 2020 Nov; 92(22):15244-15252. PubMed ID: 33108733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical detection of alkaline phosphatase activity through enzyme-catalyzed reaction using aminoferrocene as an electroactive probe.
    Wang W; Lu J; Hao L; Yang H; Song X; Si F
    Anal Bioanal Chem; 2021 Mar; 413(7):1827-1836. PubMed ID: 33481047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ExoSD chips for high-purity immunomagnetic separation and high-sensitivity detection of gastric cancer cell-derived exosomes.
    Yu Z; Lin S; Xia F; Liu Y; Zhang D; Wang F; Wang Y; Li Q; Niu J; Cao C; Cui D; Sheng N; Ren J; Wang Z; Chen D
    Biosens Bioelectron; 2021 Dec; 194():113594. PubMed ID: 34474280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide-based biosensing approaches for targeting breast cancer-derived exosomes.
    da Fonseca Alves R; Pallarès-Rusiñol A; Rossi R; Martí M; Vaz ER; de Araújo TG; Sotomayor MDPT; Pividori MI
    Biosens Bioelectron; 2024 Jul; 255():116211. PubMed ID: 38537428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly sensitive, eco-friendly electrochemical assay for alkaline phosphatase activity based on a photoATRP signal amplification strategy.
    Si F; Zhang Y; Lu J; Hou M; Yang H; Liu Y
    Talanta; 2023 Jan; 252():123775. PubMed ID: 36037766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured electrochemical immunosensor for detection of serological alkaline phosphatase.
    Simão EP; Frías IAM; Andrade CAS; Oliveira MDL
    Colloids Surf B Biointerfaces; 2018 Nov; 171():413-418. PubMed ID: 30071483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoblastic exosomes. A non-destructive quantitative approach of alkaline phosphatase to assess osteoconductive nanomaterials.
    Sanchez MA; Felice B; Sappia LD; Lima Moura S; Martí M; Pividori MI
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():110931. PubMed ID: 32600679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical Au nanoarrays functionalized 2D Ti
    You Q; Zhuang L; Chang Z; Ge M; Mei Q; Yang L; Dong WF
    Biosens Bioelectron; 2022 Nov; 216():114647. PubMed ID: 36029661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A colorimetric alkaline phosphatase biosensor based on p-aminophenol-mediated growth of silver nanoparticles.
    Shaban SM; Moon BS; Pyun DG; Kim DH
    Colloids Surf B Biointerfaces; 2021 Sep; 205():111835. PubMed ID: 33992822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates.
    Shen C; Li X; Rasooly A; Guo L; Zhang K; Yang M
    Biosens Bioelectron; 2016 Nov; 85():220-225. PubMed ID: 27179562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A path-choice-based biosensor to detect the activity of the alkaline phosphatase as the switch.
    Zhang J; Zhao W; Zhang W; Liu Y; Qin Y; Zhang W; Zhou Z; Zhou Y; Wang H; Xiao X; Wu T
    Anal Chim Acta; 2020 Oct; 1135():64-72. PubMed ID: 33070860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Detection and Capillary Electrophoresis: Comparative Studies for Alkaline Phosphatase (ALP) Release from Living Cells.
    Balbaied T; Hogan A; Moore E
    Biosensors (Basel); 2020 Aug; 10(8):. PubMed ID: 32796526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nature-inspired colorimetric and fluorescent dual-modal biosensor for exosomes detection.
    Xia Y; Chen T; Chen G; Weng Y; Zeng L; Liao Y; Chen W; Lan J; Zhang J; Chen J
    Talanta; 2020 Jul; 214():120851. PubMed ID: 32278412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ti
    Zhang H; Wang Z; Wang F; Zhang Y; Wang H; Liu Y
    Talanta; 2021 Mar; 224():121879. PubMed ID: 33379088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.