BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 34891084)

  • 1. Epigenetic control of the Epstein-Barr lifecycle.
    Guo R; Gewurz BE
    Curr Opin Virol; 2022 Feb; 52():78-88. PubMed ID: 34891084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone Loaders CAF1 and HIRA Restrict Epstein-Barr Virus B-Cell Lytic Reactivation.
    Zhang Y; Jiang C; Trudeau SJ; Narita Y; Zhao B; Teng M; Guo R; Gewurz BE
    mBio; 2020 Oct; 11(5):. PubMed ID: 33109754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic crossroads of the Epstein-Barr virus B-cell relationship.
    Frost TC; Gewurz BE
    Curr Opin Virol; 2018 Oct; 32():15-23. PubMed ID: 30227386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methionine metabolism controls the B cell EBV epigenome and viral latency.
    Guo R; Liang JH; Zhang Y; Lutchenkov M; Li Z; Wang Y; Trujillo-Alonso V; Puri R; Giulino-Roth L; Gewurz BE
    Cell Metab; 2022 Sep; 34(9):1280-1297.e9. PubMed ID: 36070681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BZLF1 governs CpG-methylated chromatin of Epstein-Barr Virus reversing epigenetic repression.
    Woellmer A; Arteaga-Salas JM; Hammerschmidt W
    PLoS Pathog; 2012 Sep; 8(9):e1002902. PubMed ID: 22969425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases.
    Niller HH; Wolf H; Minarovits J
    Autoimmunity; 2008 May; 41(4):298-328. PubMed ID: 18432410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide DNA methylation as an epigenetic consequence of Epstein-Barr virus infection of immortalized keratinocytes.
    Birdwell CE; Queen KJ; Kilgore PC; Rollyson P; Trutschl M; Cvek U; Scott RS
    J Virol; 2014 Oct; 88(19):11442-58. PubMed ID: 25056883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetics of Epstein Barr virus - A review.
    Shareena G; Kumar D
    Biochim Biophys Acta Mol Basis Dis; 2023 Dec; 1869(8):166838. PubMed ID: 37544529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic dysregulation of epstein-barr virus latency and development of autoimmune disease.
    Niller HH; Wolf H; Ay E; Minarovits J
    Adv Exp Med Biol; 2011; 711():82-102. PubMed ID: 21627044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interferon-γ-inducible protein 16 (IFI16) is required for the maintenance of Epstein-Barr virus latency.
    Pisano G; Roy A; Ahmed Ansari M; Kumar B; Chikoti L; Chandran B
    Virol J; 2017 Nov; 14(1):221. PubMed ID: 29132393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic dysregulation of the host cell genome in Epstein-Barr virus-associated neoplasia.
    Niller HH; Wolf H; Minarovits J
    Semin Cancer Biol; 2009 Jun; 19(3):158-64. PubMed ID: 19429479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CTCF prevents the epigenetic drift of EBV latency promoter Qp.
    Tempera I; Wiedmer A; Dheekollu J; Lieberman PM
    PLoS Pathog; 2010 Aug; 6(8):e1001048. PubMed ID: 20730088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA hypermethylation induced by Epstein-Barr virus in the development of Epstein-Barr virus-associated gastric carcinoma.
    Choi SJ; Shin YS; Kang BW; Kim JG; Won KJ; Lieberman PM; Cho H; Kang H
    Arch Pharm Res; 2017 Aug; 40(8):894-905. PubMed ID: 28779374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic lifestyle of Epstein-Barr virus.
    Buschle A; Hammerschmidt W
    Semin Immunopathol; 2020 Apr; 42(2):131-142. PubMed ID: 32232535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay between the Epigenetic Enzyme Lysine (K)-Specific Demethylase 2B and Epstein-Barr Virus Infection.
    Vargas-Ayala RC; Jay A; Manara F; Maroui MA; Hernandez-Vargas H; Diederichs A; Robitaille A; Sirand C; Ceraolo MG; Romero-Medina MC; Cros MP; Cuenin C; Durand G; Le Calvez-Kelm F; Mundo L; Leoncini L; Manet E; Herceg Z; Gruffat H; Accardi R
    J Virol; 2019 Jul; 93(13):. PubMed ID: 30996097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating genetic-and-epigenetic networks, and the cellular mechanisms occurring in Epstein-Barr virus-infected human B lymphocytes via big data mining and genome-wide two-sided NGS data identification.
    Li CW; Jheng BR; Chen BS
    PLoS One; 2018; 13(8):e0202537. PubMed ID: 30133498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Epstein-Barr virus and gastric carcinoma].
    Fukayama M
    Nihon Rinsho; 2012 Oct; 70(10):1715-9. PubMed ID: 23198550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PARP1 Stabilizes CTCF Binding and Chromatin Structure To Maintain Epstein-Barr Virus Latency Type.
    Lupey-Green LN; Caruso LB; Madzo J; Martin KA; Tan Y; Hulse M; Tempera I
    J Virol; 2018 Sep; 92(18):. PubMed ID: 29976663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epstein-Barr virus: a master epigenetic manipulator.
    Scott RS
    Curr Opin Virol; 2017 Oct; 26():74-80. PubMed ID: 28780440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular microRNAs 200b and 429 regulate the Epstein-Barr virus switch between latency and lytic replication.
    Ellis-Connell AL; Iempridee T; Xu I; Mertz JE
    J Virol; 2010 Oct; 84(19):10329-43. PubMed ID: 20668090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.