These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 34891172)

  • 21. DLDTI: a learning-based framework for drug-target interaction identification using neural networks and network representation.
    Zhao Y; Zheng K; Guan B; Guo M; Song L; Gao J; Qu H; Wang Y; Shi D; Zhang Y
    J Transl Med; 2020 Nov; 18(1):434. PubMed ID: 33187537
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug repositioning based on residual attention network and free multiscale adversarial training.
    Li G; Li S; Liang C; Xiao Q; Luo J
    BMC Bioinformatics; 2024 Aug; 25(1):261. PubMed ID: 39118000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding.
    Yue Y; He S
    BMC Bioinformatics; 2021 Sep; 22(1):418. PubMed ID: 34479477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EGeRepDR: An enhanced genetic-based representation learning for drug repurposing using multiple biomedical sources.
    Muniyappan S; Rayan AXA; Varrieth GT
    J Biomed Inform; 2023 Nov; 147():104528. PubMed ID: 37858852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of drug-disease associations based on reinforcement symmetric metric learning and graph convolution network.
    Luo H; Zhu C; Wang J; Zhang G; Luo J; Yan C
    Front Pharmacol; 2024; 15():1337764. PubMed ID: 38384286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PTBGRP: predicting phage-bacteria interactions with graph representation learning on microbial heterogeneous information network.
    Pan J; You Z; You W; Zhao T; Feng C; Zhang X; Ren F; Ma S; Wu F; Wang S; Sun Y
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37742053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MGREL: A multi-graph representation learning-based ensemble learning method for gene-disease association prediction.
    Wang Z; Gu Y; Zheng S; Yang L; Li J
    Comput Biol Med; 2023 Mar; 155():106642. PubMed ID: 36805231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A computational approach to drug repurposing using graph neural networks.
    Doshi S; Chepuri SP
    Comput Biol Med; 2022 Nov; 150():105992. PubMed ID: 36228466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. iGRLDTI: an improved graph representation learning method for predicting drug-target interactions over heterogeneous biological information network.
    Zhao BW; Su XR; Hu PW; Huang YA; You ZH; Hu L
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37505483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fusing graph transformer with multi-aggregate GCN for enhanced drug-disease associations prediction.
    He S; Yun L; Yi H
    BMC Bioinformatics; 2024 Feb; 25(1):79. PubMed ID: 38378479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network.
    Yang R; Fu Y; Zhang Q; Zhang L
    Artif Intell Med; 2024 Apr; 150():102805. PubMed ID: 38553169
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction.
    Liu L; Zhang Q; Wei Y; Zhao Q; Liao B
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic category-sensitive hypergraph inferring and homo-heterogeneous neighbor feature learning for drug-related microbe prediction.
    Xuan P; Xu Z; Cui H; Gu J; Liu C; Zhang T; Wu P
    Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39292557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MGATRx: Discovering Drug Repositioning Candidates Using Multi-View Graph Attention.
    Yella JK; Jegga AG
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2596-2604. PubMed ID: 34014830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational drug repositioning with attention walking.
    Park JH; Cho YR
    Sci Rep; 2024 May; 14(1):10072. PubMed ID: 38698208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction.
    Li J; Wang J; Lv H; Zhang Z; Wang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):655-665. PubMed ID: 34115592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction.
    Gu Y; Zheng S; Yin Q; Jiang R; Li J
    Comput Biol Med; 2022 Nov; 150():106127. PubMed ID: 36182762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning multi-scale heterogenous network topologies and various pairwise attributes for drug-disease association prediction.
    Zhang H; Cui H; Zhang T; Cao Y; Xuan P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DRTerHGAT: A drug repurposing method based on the ternary heterogeneous graph attention network.
    He H; Xie J; Huang D; Zhang M; Zhao X; Ying Y; Wang J
    J Mol Graph Model; 2024 Jul; 130():108783. PubMed ID: 38677034
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting drug-disease associations via sigmoid kernel-based convolutional neural networks.
    Jiang HJ; You ZH; Huang YA
    J Transl Med; 2019 Nov; 17(1):382. PubMed ID: 31747915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.