These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34891268)

  • 1. Actor-Critic Reinforcement Learning Based Algorithm for Contaminant Type Identification in Surface Electromyography Data
    Tosin MC; Bagesteiro LB; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():186-189. PubMed ID: 34891268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actor-Critic Reinforcement Learning Based Algorithm for Contaminant Minimization in sEMG Movement Recognition.
    Tosin MC; Bagesteiro LB; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3636-3639. PubMed ID: 36086267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meta attention for Off-Policy Actor-Critic.
    Huang J; Huang W; Lan L; Wu D
    Neural Netw; 2023 Jun; 163():86-96. PubMed ID: 37030278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recurrent Neural Network for Contaminant Type Detector in Surface Electromyography Signals.
    Machado J; Tosin MC; Bagesteiro LB; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3759-3762. PubMed ID: 33018819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of contaminant type in surface electromyography (EMG) signals.
    McCool P; Fraser GD; Chan AD; Petropoulakis L; Soraghan JJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):774-83. PubMed ID: 24760926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equivariant Graph-Representation-Based Actor-Critic Reinforcement Learning for Nanoparticle Design.
    Elsborg J; Bhowmik A
    J Chem Inf Model; 2023 Jun; 63(12):3731-3741. PubMed ID: 37276140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reinforcement learning for automatic quadrilateral mesh generation: A soft actor-critic approach.
    Pan J; Huang J; Cheng G; Zeng Y
    Neural Netw; 2023 Jan; 157():288-304. PubMed ID: 36375347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supervised-actor-critic reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units.
    Yu C; Ren G; Dong Y
    BMC Med Inform Decis Mak; 2020 Jul; 20(Suppl 3):124. PubMed ID: 32646412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target Tracking Control of a Biomimetic Underwater Vehicle Through Deep Reinforcement Learning.
    Wang Y; Tang C; Wang S; Cheng L; Wang R; Tan M; Hou Z
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3741-3752. PubMed ID: 33560993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BGRL: Basal Ganglia inspired Reinforcement Learning based framework for deep brain stimulators.
    Agarwal H; Rathore H
    Artif Intell Med; 2024 Jan; 147():102736. PubMed ID: 38184360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ECG artifact cancellation in surface EMG signals by fractional order calculus application.
    Miljković N; Popović N; Djordjević O; Konstantinović L; Šekara TB
    Comput Methods Programs Biomed; 2017 Mar; 140():259-264. PubMed ID: 28254082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous action deep reinforcement learning for propofol dosing during general anesthesia.
    Schamberg G; Badgeley M; Meschede-Krasa B; Kwon O; Brown EN
    Artif Intell Med; 2022 Jan; 123():102227. PubMed ID: 34998516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins N; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4108-11. PubMed ID: 23366831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CleanEMG--power line interference estimation in sEMG using an adaptive least squares algorithm.
    Fraser GD; Chan AD; Green JR; Abser N; MacIsaac D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7941-4. PubMed ID: 22256182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of multisensor data fusion in neuromuscular control of a sagittal arm with a pair of muscles using actor-critic reinforcement learning method.
    Golkhou V; Parnianpour M; Lucas C
    Technol Health Care; 2004; 12(6):425-38. PubMed ID: 15671597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Actor-Dueling-Critic Method for Reinforcement Learning.
    Wu M; Gao Y; Jung A; Zhang Q; Du S
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces.
    Prins NW; Sanchez JC; Prasad A
    Front Neurosci; 2014; 8():111. PubMed ID: 24904257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An actor-critic framework based on deep reinforcement learning for addressing flexible job shop scheduling problems.
    Zhao C; Deng N
    Math Biosci Eng; 2024 Jan; 21(1):1445-1471. PubMed ID: 38303472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Filtering the surface EMG signal: Movement artifact and baseline noise contamination.
    De Luca CJ; Gilmore LD; Kuznetsov M; Roy SH
    J Biomech; 2010 May; 43(8):1573-9. PubMed ID: 20206934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.