These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34891273)

  • 21. Fiberless, Multi-Channel fNIRS-EEG System Based on Silicon Photomultipliers: Towards Sensitive and Ecological Mapping of Brain Activity and Neurovascular Coupling.
    Chiarelli AM; Perpetuini D; Croce P; Greco G; Mistretta L; Rizzo R; Vinciguerra V; Romeo MF; Zappasodi F; Merla A; Fallica PG; Edlinger G; Ortner R; Giaconia GC
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wielding and evaluating the removal composition of common artefacts in EEG signals for driving behaviour analysis.
    Qi G; Zhao S; Ceder AA; Guan W; Yan X
    Accid Anal Prev; 2021 Sep; 159():106223. PubMed ID: 34119819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hemodynamic signals in fNIRS.
    Hoshi Y
    Prog Brain Res; 2016; 225():153-79. PubMed ID: 27130415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Temporal Muscle of the Head Can Cause Artifacts in Optical Imaging Studies with Functional Near-Infrared Spectroscopy.
    Schecklmann M; Mann A; Langguth B; Ehlis AC; Fallgatter AJ; Haeussinger FB
    Front Hum Neurosci; 2017; 11():456. PubMed ID: 28966580
    [No Abstract]   [Full Text] [Related]  

  • 25. Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals.
    Sirpal P; Damseh R; Peng K; Nguyen DK; Lesage F
    Neuroinformatics; 2022 Jul; 20(3):537-558. PubMed ID: 34378155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An iterative subspace denoising algorithm for removing electroencephalogram ocular artifacts.
    Sameni R; Gouy-Pailler C
    J Neurosci Methods; 2014 Mar; 225():97-105. PubMed ID: 24486874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of signal artefacts on electroencephalography spectral power during sleep: quantifying the effectiveness of automated artefact-rejection algorithms.
    Liu J; Ramakrishnan S; Laxminarayan S; Neal M; Cashmere DJ; Germain A; Reifman J
    J Sleep Res; 2018 Feb; 27(1):98-102. PubMed ID: 28656650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing fNIRS Analysis Using EEG Rhythmic Signatures: An EEG-Informed fNIRS Analysis Study.
    Li R; Zhao C; Wang C; Wang J; Zhang Y
    IEEE Trans Biomed Eng; 2020 Oct; 67(10):2789-2797. PubMed ID: 32031925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic artefact removal in a self-paced hybrid brain- computer interface system.
    Yong X; Fatourechi M; Ward RK; Birch GE
    J Neuroeng Rehabil; 2012 Jul; 9():50. PubMed ID: 22838499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.
    Anwar AR; Muthalib M; Perrey S; Galka A; Granert O; Wolff S; Heute U; Deuschl G; Raethjen J; Muthuraman M
    Brain Topogr; 2016 Sep; 29(5):645-60. PubMed ID: 27438589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploiting neurovascular coupling: a Bayesian sequential Monte Carlo approach applied to simulated EEG fNIRS data.
    Croce P; Zappasodi F; Merla A; Chiarelli AM
    J Neural Eng; 2017 Aug; 14(4):046029. PubMed ID: 28504643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. fNIRS response during walking - Artefact or cortical activity? A systematic review.
    Vitorio R; Stuart S; Rochester L; Alcock L; Pantall A
    Neurosci Biobehav Rev; 2017 Dec; 83():160-172. PubMed ID: 29017917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multimodal detection of head-movement artefacts in EEG.
    O'Regan S; Marnane W
    J Neurosci Methods; 2013 Aug; 218(1):110-20. PubMed ID: 23685269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid motion artifact detection and correction approach for functional near-infrared spectroscopy measurements.
    Gao L; Wei Y; Wang Y; Wang G; Zhang Q; Zhang J; Chen X; Yan X
    J Biomed Opt; 2022 Feb; 27(2):. PubMed ID: 35212200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of an Adaptive Artifact Subspace Reconstruction Based on Hebbian/Anti-Hebbian Learning Networks for Enhancing BCI Performance.
    Tsai BY; Diddi SVS; Ko LW; Wang SJ; Chang CY; Jung TP
    IEEE Trans Neural Netw Learn Syst; 2022 Jun; PP():. PubMed ID: 35714085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling jaw-related motion artifacts in functional near-infrared spectroscopy.
    Zhang F; Reid A; Schroeder A; Ding L; Yuan H
    J Neurosci Methods; 2023 Mar; 388():109810. PubMed ID: 36738847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multichannel wearable fNIRS-EEG system for long-term clinical monitoring.
    Kassab A; Le Lan J; Tremblay J; Vannasing P; Dehbozorgi M; Pouliot P; Gallagher A; Lesage F; Sawan M; Nguyen DK
    Hum Brain Mapp; 2018 Jan; 39(1):7-23. PubMed ID: 29058341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards motion insensitive EEG-fMRI: Correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system.
    Maziero D; Velasco TR; Hunt N; Payne E; Lemieux L; Salmon CEG; Carmichael DW
    Neuroimage; 2016 Sep; 138():13-27. PubMed ID: 27157789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: an easy-to-use filter method.
    Haeussinger FB; Dresler T; Heinzel S; Schecklmann M; Fallgatter AJ; Ehlis AC
    Neuroimage; 2014 Jul; 95():69-79. PubMed ID: 24657779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. fNIRS improves seizure detection in multimodal EEG-fNIRS recordings.
    Sirpal P; Kassab A; Pouliot P; Nguyen DK; Lesage F
    J Biomed Opt; 2019 Feb; 24(5):1-9. PubMed ID: 30734544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.