These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34891341)

  • 1. A comparison between the Hilbert-Huang and Discrete Wavelet Transforms to recognize emotions from electroencephalographic signals.
    Valderrama CE
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():496-499. PubMed ID: 34891341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hilbert-Huang transformation-based time-frequency analysis methods in biomedical signal applications.
    Lin CF; Zhu JD
    Proc Inst Mech Eng H; 2012 Mar; 226(3):208-16. PubMed ID: 22558835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Revised Hilbert-Huang Transformation to Track Non-Stationary Association of Electroencephalography Signals.
    Shan X; Huo S; Yang L; Cao J; Zou J; Chen L; Sarrigiannis PG; Zhao Y
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():841-851. PubMed ID: 33909567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method.
    Taran S; Bajaj V
    Comput Methods Programs Biomed; 2019 May; 173():157-165. PubMed ID: 31046991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelet-based study of valence-arousal model of emotions on EEG signals with LabVIEW.
    Guzel Aydin S; Kaya T; Guler H
    Brain Inform; 2016 Jun; 3(2):109-117. PubMed ID: 27747605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-frequency analysis of non-stationary fusion plasma signals using an improved Hilbert-Huang transform.
    Liu Y; Tan Y; Xie H; Wang W; Gao Z
    Rev Sci Instrum; 2014 Jul; 85(7):073502. PubMed ID: 25085135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Applications of Wavelet Transform Combining Empirical Mode Decomposition in EEG Analysis with Music Intervention].
    Li X; Tian Y; Hou Y; Qi X; Sun X; Fan M; Cai E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Aug; 33(4):762-9. PubMed ID: 29714918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognizing emotions from EEG subbands using wavelet analysis.
    Candra H; Yuwono M; Handojoseno A; Chai R; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6030-3. PubMed ID: 26737666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Methods for Multi-Channel EEG-Based Emotion Recognition.
    Olamat A; Ozel P; Atasever S
    Int J Neural Syst; 2022 May; 32(5):2250021. PubMed ID: 35369851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrete wavelet transform coefficients for emotion recognition from EEG signals.
    Yohanes RE; Ser W; Huang GB
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2251-4. PubMed ID: 23366371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency analysis of eyes open and eyes closed EEG signals using the Hilbert-Huang transform.
    Thuraisingham RA; Tran Y; Craig A; Nguyen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2865-8. PubMed ID: 23366522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-Frequency Analysis of Scalp EEG With Hilbert-Huang Transform and Deep Learning.
    Zheng J; Liang M; Sinha S; Ge L; Yu W; Ekstrom A; Hsieh F
    IEEE J Biomed Health Inform; 2022 Apr; 26(4):1549-1559. PubMed ID: 34516381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal fusion framework: a multiresolution approach for emotion classification and recognition from physiological signals.
    Verma GK; Tiwary US
    Neuroimage; 2014 Nov; 102 Pt 1():162-72. PubMed ID: 24269801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable Sensor-Based Human Activity Recognition Method with Multi-Features Extracted from Hilbert-Huang Transform.
    Xu H; Liu J; Hu H; Zhang Y
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27918414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroencephalogram-Based Emotion Recognition Using a Particle Swarm Optimization-Derived Support Vector Machine Classifier.
    Suma KV; Lingaraju GM; Dinesh PA; Nivedha R
    Crit Rev Biomed Eng; 2020; 48(1):17-28. PubMed ID: 32749117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hybrid Hand-Crafted and Deep Neural Spatio-Temporal EEG Features Clustering Framework for Precise Emotional Status Recognition.
    Haq QMU; Yao L; Rahmaniar W; Fawad ; Islam F
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emotion recognition through EEG phase space dynamics and Dempster-Shafer theory.
    Zangeneh Soroush M; Maghooli K; Setarehdan SK; Nasrabadi AM
    Med Hypotheses; 2019 Jun; 127():34-45. PubMed ID: 31088645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seizure classification in EEG signals utilizing Hilbert-Huang transform.
    Oweis RJ; Abdulhay EW
    Biomed Eng Online; 2011 May; 10():38. PubMed ID: 21609459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Application of HHT to driving fatigue in EEG analysis].
    Nan J; Ai L; Shen J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Aug; 28(4):653-7. PubMed ID: 21936356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of two Hilbert spectral analyses of heart rate variability.
    Ihlen EA
    Med Biol Eng Comput; 2009 Oct; 47(10):1035-44. PubMed ID: 19521730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.