These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34891348)

  • 21. Monaural cardiopulmonary sound separation via complex-valued deep autoencoder and cyclostationarity.
    Yang C; Hu N; Xu D; Wang Z; Cai S
    Biomed Phys Eng Express; 2023 Mar; 9(3):. PubMed ID: 36796095
    [No Abstract]   [Full Text] [Related]  

  • 22. [Auscultation of the lungs--still a useful examination?].
    Melbye H
    Tidsskr Nor Laegeforen; 2001 Feb; 121(4):451-4. PubMed ID: 11255861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lung Sound Classification Using Co-Tuning and Stochastic Normalization.
    Nguyen T; Pernkopf F
    IEEE Trans Biomed Eng; 2022 Sep; 69(9):2872-2882. PubMed ID: 35254969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An automated computerized auscultation and diagnostic system for pulmonary diseases.
    Abbas A; Fahim A
    J Med Syst; 2010 Dec; 34(6):1149-55. PubMed ID: 20703592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lung Sound Classification Using Snapshot Ensemble of Convolutional Neural Networks.
    Nguyen T; Pernkopf F
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():760-763. PubMed ID: 33018097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Data augmentation using Variational Autoencoders for improvement of respiratory disease classification.
    Saldanha J; Chakraborty S; Patil S; Kotecha K; Kumar S; Nayyar A
    PLoS One; 2022; 17(8):e0266467. PubMed ID: 35960763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-time counting of wheezing events from lung sounds using deep learning algorithms: Implications for disease prediction and early intervention.
    Im S; Kim T; Min C; Kang S; Roh Y; Kim C; Kim M; Kim SH; Shim K; Koh JS; Han S; Lee J; Kim D; Kang D; Seo S
    PLoS One; 2023; 18(11):e0294447. PubMed ID: 37983213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple computer-based measurement and analysis system of pulmonary auscultation sounds.
    Polat H; Güler I
    J Med Syst; 2004 Dec; 28(6):665-72. PubMed ID: 15615294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lung sounds classification using convolutional neural networks.
    Bardou D; Zhang K; Ahmad SM
    Artif Intell Med; 2018 Jun; 88():58-69. PubMed ID: 29724435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of analogue and electronic stethoscopes for pulmonary auscultation by internal medicine residents.
    Gottlieb ER; Aliotta JM; Tammaro D
    Postgrad Med J; 2018 Dec; 94(1118):700-703. PubMed ID: 30472685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Breath Measurement Method for Synchronized Reproduction of Biological Tones in an Augmented Reality Auscultation Training System.
    Kono Y; Miura K; Kasai H; Ito S; Asahina M; Tanabe M; Nomura Y; Nakaguchi T
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Utilization of Digital Bluetooth Stethoscopes to Enhance Student Learning.
    Nurse Educ; 2019; 44(5):283. PubMed ID: 31157694
    [No Abstract]   [Full Text] [Related]  

  • 33. Smart Devices Are Poised to Revolutionize the Usefulness of Respiratory Sounds.
    Kraman SS; Pasterkamp H; Wodicka GR
    Chest; 2023 Jun; 163(6):1519-1528. PubMed ID: 36706908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Neural Network for Respiratory Sound Classification in Wearable Devices Enabled by Patient Specific Model Tuning.
    Acharya J; Basu A
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):535-544. PubMed ID: 32191898
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of adventitious lung sounds originating from pulmonary tuberculosis.
    Becker KW; Scheffer C; Blanckenberg MM; Diacon AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4334-7. PubMed ID: 24110692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scalogram based prediction model for respiratory disorders using optimized convolutional neural networks.
    Jayalakshmy S; Sudha GF
    Artif Intell Med; 2020 Mar; 103():101809. PubMed ID: 32143805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An objective measure of signal quality for pediatric lung auscultations.
    Kala A; Husain A; McCollum ED; Elhilali M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():772-775. PubMed ID: 33018100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in Microsensors and Wearable Bioelectronics for Digital Stethoscopes in Health Monitoring and Disease Diagnosis.
    Lee SH; Kim YS; Yeo WH
    Adv Healthc Mater; 2021 Nov; 10(22):e2101400. PubMed ID: 34486237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Respiratory sounds. Advances beyond the stethoscope.
    Pasterkamp H; Kraman SS; Wodicka GR
    Am J Respir Crit Care Med; 1997 Sep; 156(3 Pt 1):974-87. PubMed ID: 9310022
    [No Abstract]   [Full Text] [Related]  

  • 40. Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning.
    Kim Y; Hyon Y; Jung SS; Lee S; Yoo G; Chung C; Ha T
    Sci Rep; 2021 Aug; 11(1):17186. PubMed ID: 34433880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.