These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34891380)

  • 1. Convolutional Neural Network Approach for Elbow Torque Estimation during Quasi-dynamic and Dynamic Contractions.
    Hajian G; Morin E; Etemad A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():665-668. PubMed ID: 34891380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Multi-Scale Fusion of Convolutional Neural Networks for EMG-Based Movement Estimation.
    Hajian G; Morin E
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():486-495. PubMed ID: 35192465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using recurrent artificial neural network model to estimate voluntary elbow torque in dynamic situations.
    Song R; Tong KY
    Med Biol Eng Comput; 2005 Jul; 43(4):473-80. PubMed ID: 16255429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for muscle activation during isometric torque generation at the human elbow.
    Buchanan TS; Rovai GP; Rymer WZ
    J Neurophysiol; 1989 Dec; 62(6):1201-12. PubMed ID: 2600619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dynamic EMG-torque model of elbow based on neural networks.
    Liang Peng ; Zeng-Guang Hou ; Weiqun Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2852-5. PubMed ID: 26736886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle synergies and isometric torque production: influence of supination and pronation level on elbow flexion.
    Jamison JC; Caldwell GE
    J Neurophysiol; 1993 Sep; 70(3):947-60. PubMed ID: 8229181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isokinetic elbow joint torques estimation from surface EMG and joint kinematic data: using an artificial neural network model.
    Luh JJ; Chang GC; Cheng CK; Lai JS; Kuo TS
    J Electromyogr Kinesiol; 1999 Jun; 9(3):173-83. PubMed ID: 10328412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relating agonist-antagonist electromyograms to joint torque during isometric, quasi-isotonic, nonfatiguing contractions.
    Clancy EA; Hogan N
    IEEE Trans Biomed Eng; 1997 Oct; 44(10):1024-8. PubMed ID: 9311171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating ultrasound-measured musculotendon parameters to subject-specific EMG-driven model to simulate voluntary elbow flexion for persons after stroke.
    Li L; Tong KY; Hu XL; Hung LK; Koo TK
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):101-9. PubMed ID: 19012998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of joint angle on EMG-torque model during constant-posture, quasi-constant-torque contractions.
    Liu P; Liu L; Martel F; Rancourt D; Clancy EA
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1020-8. PubMed ID: 23932797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of synergic relations during isometric contractions of human elbow muscles.
    Buchanan TS; Almdale DP; Lewis JL; Rymer WZ
    J Neurophysiol; 1986 Nov; 56(5):1225-41. PubMed ID: 3794767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced dynamic EMG-force estimation through calibration and PCI modeling.
    Hashemi J; Morin E; Mousavi P; Hashtrudi-Zaad K
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):41-50. PubMed ID: 24860036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticipation of elbow joint perturbation shortens the onset time of the reflex EMG response in biceps brachii and triceps brachii.
    Koike T; Yamada N
    Neurosci Lett; 2007 Jan; 412(1):56-61. PubMed ID: 17194539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the electromyogram to anticipate torques about the elbow.
    Koirala K; Dasog M; Liu P; Clancy EA
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):396-402. PubMed ID: 25014956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscular torque generation during imposed joint rotation: torque-angle relationships when subjects' only goal is to make a constant effort.
    Burgess PR; Jones LF; Buhler CF; Dewald JP; Zhang LQ; Rymer WZ
    Somatosens Mot Res; 2002; 19(4):327-40. PubMed ID: 12590834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies used to stabilize the elbow joint challenged by inverted pendulum loading.
    Stokes IA; Gardner-Morse MG
    J Biomech; 2000 Jun; 33(6):737-43. PubMed ID: 10807995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Investigation of Dimensionality Reduction Techniques for EMG-based Force Estimation.
    Hajian G; Etemad A; Morin E
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():698-701. PubMed ID: 31945993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bio-mechanical Model for Elbow Isokinetic and Isotonic Flexions.
    Wang X; Tao X; So RCH
    Sci Rep; 2017 Aug; 7(1):8919. PubMed ID: 28827759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental muscle pain changes motor control strategies in dynamic contractions.
    Ervilha UF; Farina D; Arendt-Nielsen L; Graven-Nielsen T
    Exp Brain Res; 2005 Jul; 164(2):215-24. PubMed ID: 15952017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.