These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 34891388)
1. Estimation of Joint Angle From sEMG and Inertial Measurements Based on Deep Learning Approach. Delgado AL; Da Rocha AF; Leon AS; Ruiz-Olaya A; Montero KR; Delis AL Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():700-703. PubMed ID: 34891388 [TBL] [Abstract][Full Text] [Related]
2. Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach. Song Q; Ma X; Liu Y Comput Biol Med; 2023 Sep; 163():107124. PubMed ID: 37315381 [TBL] [Abstract][Full Text] [Related]
3. MuscleNET: mapping electromyography to kinematic and dynamic biomechanical variables by machine learning. Nasr A; Bell S; He J; Whittaker RL; Jiang N; Dickerson CR; McPhee J J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352741 [No Abstract] [Full Text] [Related]
4. Mapping Method of Human Arm Motion Based on Surface Electromyography Signals. Zheng Y; Zheng G; Zhang H; Zhao B; Sun P Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732933 [TBL] [Abstract][Full Text] [Related]
5. A Novel TCN-LSTM Hybrid Model for sEMG-Based Continuous Estimation of Wrist Joint Angles. Du J; Liu Z; Dong W; Zhang W; Miao Z Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275542 [TBL] [Abstract][Full Text] [Related]
6. Long exposure convolutional memory network for accurate estimation of finger kinematics from surface electromyographic signals. Guo W; Ma C; Wang Z; Zhang H; Farina D; Jiang N; Lin C J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33326941 [No Abstract] [Full Text] [Related]
7. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters. Raj R; Sivanandan KS J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692 [TBL] [Abstract][Full Text] [Related]
8. Sensor Fusion for Myoelectric Control Based on Deep Learning With Recurrent Convolutional Neural Networks. Wang W; Chen B; Xia P; Hu J; Peng Y Artif Organs; 2018 Sep; 42(9):E272-E282. PubMed ID: 30003559 [TBL] [Abstract][Full Text] [Related]
9. Continuous Estimation of Knee Joint Angle Based on Surface Electromyography Using a Long Short-Term Memory Neural Network and Time-Advanced Feature. Ma X; Liu Y; Song Q; Wang C Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887326 [TBL] [Abstract][Full Text] [Related]
10. Estimation of Lower Limb Kinematics during Squat Task in Different Loading Using sEMG Activity and Deep Recurrent Neural Networks. Zangene AR; Abbasi A; Nazarpour K Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883777 [TBL] [Abstract][Full Text] [Related]
11. Long short-term memory (LSTM) recurrent neural network for muscle activity detection. Ghislieri M; Cerone GL; Knaflitz M; Agostini V J Neuroeng Rehabil; 2021 Oct; 18(1):153. PubMed ID: 34674720 [TBL] [Abstract][Full Text] [Related]
12. Neural network committees for finger joint angle estimation from surface EMG signals. Shrirao NA; Reddy NP; Kosuri DR Biomed Eng Online; 2009 Jan; 8():2. PubMed ID: 19154615 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous Estimation of Digit Tip Forces and Hand Postures in a Simulated Real-Life Condition With High-Density Electromyography and Deep Learning. Rahimi F; Badamchizadeh MA; Ghaemi S; Vecchio AD IEEE J Biomed Health Inform; 2024 Oct; 28(10):5708-5717. PubMed ID: 39361489 [TBL] [Abstract][Full Text] [Related]
14. Estimation of knee joint movement using single-channel sEMG signals with a feature-guided convolutional neural network. Zhang S; Lu J; Huo W; Yu N; Han J Front Neurorobot; 2022; 16():978014. PubMed ID: 36386394 [TBL] [Abstract][Full Text] [Related]
15. Continuous estimation of finger joint angles using muscle activation inputs from surface EMG signals. Ngeo J; Tamei T; Shibata T Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2756-9. PubMed ID: 23366496 [TBL] [Abstract][Full Text] [Related]
16. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics. Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183 [TBL] [Abstract][Full Text] [Related]
17. Performance Evaluation of Convolutional Neural Network for Hand Gesture Recognition Using EMG. Asif AR; Waris A; Gilani SO; Jamil M; Ashraf H; Shafique M; Niazi IK Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183473 [TBL] [Abstract][Full Text] [Related]
18. Myoelectric Pattern Recognition Using Gramian Angular Field and Convolutional Neural Networks for Muscle-Computer Interface. Fan J; Wen J; Lai Z Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904918 [TBL] [Abstract][Full Text] [Related]
19. sEMG-Based Gesture Recognition Using Deep Learning From Noisy Labels. Fatayer A; Gao W; Fu Y IEEE J Biomed Health Inform; 2022 Sep; 26(9):4462-4473. PubMed ID: 35653452 [TBL] [Abstract][Full Text] [Related]
20. Hand Gesture Recognition based on Surface Electromyography using Convolutional Neural Network with Transfer Learning Method. Chen X; Li Y; Hu R; Zhang X; Chen X IEEE J Biomed Health Inform; 2021 Apr; 25(4):1292-1304. PubMed ID: 32750962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]