These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 34891472)
1. LSTM-only Model for Low-complexity HR Estimation from Wrist PPG. Rocha LG; Paim G; Biswas D; Bampi S; Catthoor F; Van Hoof C; Van Helleputte N Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1068-1071. PubMed ID: 34891472 [TBL] [Abstract][Full Text] [Related]
2. BioTranslator: Inferring R-Peaks from Ambulatory Wrist-Worn PPG Signal. Everson L; Biswas D; Verhoef BE; Kim CH; Van Hoof C; Konijnenburg M; Van Helleputte N Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4241-4245. PubMed ID: 31946805 [TBL] [Abstract][Full Text] [Related]
3. Binary CorNET: Accelerator for HR Estimation From Wrist-PPG. Rocha LG; Biswas D; Verhoef BE; Bampi S; Van Hoof C; Konijnenburg M; Verhelst M; Van Helleputte N IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):715-726. PubMed ID: 32746344 [TBL] [Abstract][Full Text] [Related]
4. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises. Pankaj ; Kumar A; Komaragiri R; Kumar M Comput Biol Med; 2022 Feb; 141():105081. PubMed ID: 34952340 [TBL] [Abstract][Full Text] [Related]
5. Learning based Quality Indicator Aiding Heart Rate Estimation in Wrist-Worn PPG. Lutin E; Biswas D; Simoes-Capela N; Van Hoof C; Van Helleputte N Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7063-7067. PubMed ID: 34892729 [TBL] [Abstract][Full Text] [Related]
6. CorNET: Deep Learning Framework for PPG-Based Heart Rate Estimation and Biometric Identification in Ambulant Environment. Biswas D; Everson L; Liu M; Panwar M; Verhoef BE; Patki S; Kim CH; Acharyya A; Van Hoof C; Konijnenburg M; Van Helleputte N IEEE Trans Biomed Circuits Syst; 2019 Apr; 13(2):282-291. PubMed ID: 30629514 [TBL] [Abstract][Full Text] [Related]
7. Multi-Headed Conv-LSTM Network for Heart Rate Estimation during Daily Living Activities. Wilkosz M; Szczęsna A Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372447 [TBL] [Abstract][Full Text] [Related]
8. PPGnet: Deep Network for Device Independent Heart Rate Estimation from Photoplethysmogram. Shyam A; Ravichandran V; Preejith SP; Joseph J; Sivaprakasam M Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1899-1902. PubMed ID: 31946269 [TBL] [Abstract][Full Text] [Related]
9. Improved Heart Rate Tracking Using Multiple Wrist-type Photoplethysmography during Physical Activities. Zhu L; Du D Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440267 [TBL] [Abstract][Full Text] [Related]
10. Real-Time Robust Heart Rate Estimation From Wrist-Type PPG Signals Using Multiple Reference Adaptive Noise Cancellation. Chowdhury SS; Hyder R; Hafiz MSB; Haque MA IEEE J Biomed Health Inform; 2018 Mar; 22(2):450-459. PubMed ID: 27893403 [TBL] [Abstract][Full Text] [Related]
11. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor. Salehizadeh SM; Dao D; Bolkhovsky J; Cho C; Mendelson Y; Chon KH Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703618 [TBL] [Abstract][Full Text] [Related]
12. Q-PPG: Energy-Efficient PPG-Based Heart Rate Monitoring on Wearable Devices. Burrello A; Pagliari DJ; Risso M; Benatti S; Macii E; Benini L; Poncino M IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1196-1209. PubMed ID: 34673496 [TBL] [Abstract][Full Text] [Related]
13. A new approach to HR monitoring using photoplethysmographic signals during intensive physical exercise. Chen G; Yuan X; Zhang Y; Song X Phys Eng Sci Med; 2021 Jun; 44(2):535-543. PubMed ID: 33929712 [TBL] [Abstract][Full Text] [Related]
14. Feasibility Study of Deep Neural Network for Heart Rate Estimation from Wearable Photoplethysmography and Acceleration Signals. Chung H; Ko H; Lee H; Lee J Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3633-3636. PubMed ID: 31946663 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the signal quality of wrist-based photoplethysmography. Pradhan N; Rajan S; Adler A Physiol Meas; 2019 Jul; 40(6):065008. PubMed ID: 31100748 [TBL] [Abstract][Full Text] [Related]
16. DeepPulse: An Uncertainty-aware Deep Neural Network for Heart Rate Estimations from Wrist-worn Photoplethysmography. Ray D; Collins T; Ponnapalli PVS Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1651-1654. PubMed ID: 36086420 [TBL] [Abstract][Full Text] [Related]
17. A Robust Random Forest-Based Approach for Heart Rate Monitoring Using Photoplethysmography Signal Contaminated by Intense Motion Artifacts. Ye Y; He W; Cheng Y; Huang W; Zhang Z Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28212327 [TBL] [Abstract][Full Text] [Related]
18. A Robust Dynamic Heart-Rate Detection Algorithm Framework During Intense Physical Activities Using Photoplethysmographic Signals. Song J; Li D; Ma X; Teng G; Wei J Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29068403 [TBL] [Abstract][Full Text] [Related]
19. Heart rate monitoring from wrist-type PPG based on singular spectrum analysis with motion decision. Yang Wang ; Zhiwen Liu ; Bin Dong Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3511-3514. PubMed ID: 28269055 [TBL] [Abstract][Full Text] [Related]
20. Nine degree of freedom motion estimation for wrist PPG heart rate measurements. Galvez AV; Casson AJ Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3231-3234. PubMed ID: 31946574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]