BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34891480)

  • 1. A Comparative Study of Arousal and Valence Dimensional Variations for Emotion Recognition Using Peripheral Physiological Signals Acquired from Wearable Sensors
    Alskafi FA; Khandoker AH; Jelinek HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1104-1107. PubMed ID: 34891480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CorrNet: Fine-Grained Emotion Recognition for Video Watching Using Wearable Physiological Sensors.
    Zhang T; El Ali A; Wang C; Hanjalic A; Cesar P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Emotion with Biosignals: A Comparison of Classification and Regression Models for Estimating Valence and Arousal Level Using Wearable Sensors.
    Siirtola P; Tamminen S; Chandra G; Ihalapathirana A; Röning J
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors.
    Marín-Morales J; Higuera-Trujillo JL; Greco A; Guixeres J; Llinares C; Scilingo EP; Alcañiz M; Valenza G
    Sci Rep; 2018 Sep; 8(1):13657. PubMed ID: 30209261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arousal-Valence Classification from Peripheral Physiological Signals Using Long Short-Term Memory Networks.
    Zitouni MS; Park CY; Lee U; Hadjileontiadis L; Khandoker A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():686-689. PubMed ID: 34891385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding auditory-evoked response in affective states using wearable around-ear EEG system.
    Choi J; Kaongoen N; Choi H; Kim M; Kim BH; Jo S
    Biomed Phys Eng Express; 2023 Aug; 9(5):. PubMed ID: 37591224
    [No Abstract]   [Full Text] [Related]  

  • 7. Predicting Exact Valence and Arousal Values from EEG.
    Galvão F; Alarcão SM; Fonseca MJ
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34068895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolution Neural Network.
    Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2019; 258():140. PubMed ID: 30942731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Ensemble Learning Method for Emotion Charting Using Multimodal Physiological Signals.
    Awan AW; Usman SM; Khalid S; Anwar A; Alroobaea R; Hussain S; Almotiri J; Ullah SS; Akram MU
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emotion assessment using Machine Learning and low-cost wearable devices.
    Laureanti R; Bilucaglia M; Zito M; Circi R; Fici A; Rivetti F; Valesi R; Oldrini C; Mainardi LT; Russo V
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():576-579. PubMed ID: 33018054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online Learning for Wearable EEG-Based Emotion Classification.
    Moontaha S; Schumann FEF; Arnrich B
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of Human Emotional States Based on Valence-Arousal Scale using Electroencephalogram.
    Kumar GS; Sampathila N; Martis RJ
    J Med Signals Sens; 2023; 13(2):173-182. PubMed ID: 37448547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature selection for multimodal emotion recognition in the arousal-valence space.
    Torres CA; Orozco ÁA; Álvarez MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4330-3. PubMed ID: 24110691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arousal and Valence Classification Model Based on Long Short-Term Memory and DEAP Data for Mental Healthcare Management.
    Choi EJ; Kim DK
    Healthc Inform Res; 2018 Oct; 24(4):309-316. PubMed ID: 30443419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LSTM-Modeling of Emotion Recognition Using Peripheral Physiological Signals in Naturalistic Conversations.
    Zitouni MS; Park CY; Lee U; Hadjileontiadis LJ; Khandoker A
    IEEE J Biomed Health Inform; 2023 Feb; 27(2):912-923. PubMed ID: 36446009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Wearable In-Ear EEG Device for Emotion Monitoring.
    Athavipach C; Pan-Ngum S; Israsena P
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31533329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Efficient Machine Learning-Based Emotional Valence Recognition Approach Towards Wearable EEG.
    Abdel-Hamid L
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing an Emotion Estimation Model Based on EEG/HRV Indexes Using Feature Extraction and Feature Selection Algorithms.
    Suzuki K; Laohakangvalvit T; Matsubara R; Sugaya M
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33919251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable-based human flow experience recognition enhanced by transfer learning methods using emotion data.
    Irshad MT; Li F; Nisar MA; Huang X; Buss M; Kloep L; Peifer C; Kozusznik B; Pollak A; Pyszka A; Flak O; Grzegorzek M
    Comput Biol Med; 2023 Nov; 166():107489. PubMed ID: 37769461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosignal-Based Multimodal Emotion Recognition in a Valence-Arousal Affective Framework Applied to Immersive Video Visualization.
    Pinto J; Fred A; da Silva HP
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3577-3583. PubMed ID: 31946651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.