BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34891480)

  • 21. Emotion Assessment Using Feature Fusion and Decision Fusion Classification Based on Physiological Data: Are We There Yet?
    Bota P; Wang C; Fred A; Silva H
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heart sound signals can be used for emotion recognition.
    Xiefeng C; Wang Y; Dai S; Zhao P; Liu Q
    Sci Rep; 2019 Apr; 9(1):6486. PubMed ID: 31019217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EEG-based emotion classification using LSTM under new paradigm.
    Ahmed MZI; Sinha N
    Biomed Phys Eng Express; 2021 Sep; 7(6):. PubMed ID: 34534973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel signal to image transformation and feature level fusion for multimodal emotion recognition.
    Hatipoglu Yilmaz B; Kose C
    Biomed Tech (Berl); 2021 Aug; 66(4):353-362. PubMed ID: 33823091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selecting transferrable neurophysiological features for inter-individual emotion recognition via a shared-subspace feature elimination approach.
    Zhang W; Yin Z; Sun Z; Tian Y; Wang Y
    Comput Biol Med; 2020 Aug; 123():103875. PubMed ID: 32658790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Emotion Recognition Based on Multiple Physiological Signals].
    Chen S; Zhang L; Jiang F; Chen W; Miao J; Chen H
    Zhongguo Yi Liao Qi Xie Za Zhi; 2020 Apr; 44(4):283-287. PubMed ID: 32762198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emotion recognition using time-frequency ridges of EEG signals based on multivariate synchrosqueezing transform.
    Mert A; Celik HH
    Biomed Tech (Berl); 2021 Aug; 66(4):345-352. PubMed ID: 33684278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-dimensional CNN-based distinction of human emotions from EEG channels selected by multi-objective evolutionary algorithm.
    Moctezuma LA; Abe T; Molinas M
    Sci Rep; 2022 Mar; 12(1):3523. PubMed ID: 35241745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human emotion classification based on multiple physiological signals by wearable system.
    Liu X; Wang Q; Liu D; Wang Y; Zhang Y; Bai O; Sun J
    Technol Health Care; 2018; 26(S1):459-469. PubMed ID: 29758969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Harnessing Wearable Devices for Emotional Intelligence: Therapeutic Applications in Digital Health.
    Arabian H; Abdulbaki Alshirbaji T; Schmid R; Wagner-Hartl V; Chase JG; Moeller K
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emotional valence sensing using a wearable facial EMG device.
    Sato W; Murata K; Uraoka Y; Shibata K; Yoshikawa S; Furuta M
    Sci Rep; 2021 Mar; 11(1):5757. PubMed ID: 33707605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving the accuracy of EEG emotion recognition by combining valence lateralization and ensemble learning with tuning parameters.
    Pane ES; Wibawa AD; Purnomo MH
    Cogn Process; 2019 Nov; 20(4):405-417. PubMed ID: 31338704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals.
    Maheshwari D; Ghosh SK; Tripathy RK; Sharma M; Acharya UR
    Comput Biol Med; 2021 Jul; 134():104428. PubMed ID: 33984749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution.
    Alazrai R; Homoud R; Alwanni H; Daoud MI
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Valence-arousal classification of emotion evoked by Chinese ancient-style music using 1D-CNN-BiLSTM model on EEG signals for college students.
    Du R; Zhu S; Ni H; Mao T; Li J; Wei R
    Multimed Tools Appl; 2023; 82(10):15439-15456. PubMed ID: 36213341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emotion recognition from multimodal physiological measurements based on an interpretable feature selection method.
    Polo EM; Mollura M; Lenatti M; Zanet M; Paglialonga A; Barbieri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():989-992. PubMed ID: 34891454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Affective state estimation based on Russell's model and physiological measurements.
    Cittadini R; Tamantini C; Scotto di Luzio F; Lauretti C; Zollo L; Cordella F
    Sci Rep; 2023 Jun; 13(1):9786. PubMed ID: 37328550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-trial EEG-based emotion recognition using kernel Eigen-emotion pattern and adaptive support vector machine.
    Liu YH; Wu CT; Kao YH; Chen YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4306-9. PubMed ID: 24110685
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recognition of Intensive Valence and Arousal Affective States via Facial Electromyographic Activity in Young and Senior Adults.
    Tan JW; Andrade AO; Li H; Walter S; Hrabal D; Rukavina S; Limbrecht-Ecklundt K; Hoffman H; Traue HC
    PLoS One; 2016; 11(1):e0146691. PubMed ID: 26761427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple-output support vector machine regression with feature selection for arousal/valence space emotion assessment.
    Torres-Valencia CA; Álvarez MA; Orozco-Gutiérrez AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():970-3. PubMed ID: 25570122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.