BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34891480)

  • 41. Turkish Emotional Word Norms for Arousal, Valence, and Discrete Emotion Categories.
    Kapucu A; Kılıç A; Özkılıç Y; Sarıbaz B
    Psychol Rep; 2021 Feb; 124(1):188-209. PubMed ID: 30514162
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network.
    Cho J; Hwang H
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575708
    [TBL] [Abstract][Full Text] [Related]  

  • 43. EEG based emotion recognition using minimum spanning tree.
    Farashi S; Khosrowabadi R
    Phys Eng Sci Med; 2020 Sep; 43(3):985-996. PubMed ID: 32632572
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multi-Modal Acute Stress Recognition Using Off-the-Shelf Wearable Devices.
    Montesinos V; Dell'Agnola F; Arza A; Aminifar A; Atienza D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2196-2201. PubMed ID: 31946337
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Avoid violence, rioting, and outrage; approach celebration, delight, and strength: Using large text corpora to compute valence, arousal, and the basic emotions.
    Westbury C; Keith J; Briesemeister BB; Hofmann MJ; Jacobs AM
    Q J Exp Psychol (Hove); 2015; 68(8):1599-622. PubMed ID: 26147614
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Human Amygdala Tracks a Feature-Based Valence Signal Embedded within the Facial Expression of Surprise.
    Kim MJ; Mattek AM; Bennett RH; Solomon KM; Shin J; Whalen PJ
    J Neurosci; 2017 Sep; 37(39):9510-9518. PubMed ID: 28874449
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Emotion recognition through EEG phase space dynamics and Dempster-Shafer theory.
    Zangeneh Soroush M; Maghooli K; Setarehdan SK; Nasrabadi AM
    Med Hypotheses; 2019 Jun; 127():34-45. PubMed ID: 31088645
    [TBL] [Abstract][Full Text] [Related]  

  • 48. EEG emotion recognition using reduced channel wavelet entropy and average wavelet coefficient features with normal Mutual Information method.
    Candra H; Yuwono M; Chai R; Nguyen HT; Su S
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():463-466. PubMed ID: 29059910
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of electrocardiogram: numerical vs. image data for emotion recognition system.
    Sayed Ismail SNM; Ab Aziz NA; Ibrahim SZ; Nawawi SW; Alelyani S; Mohana M; Chia Chun L
    F1000Res; 2021; 10():1114. PubMed ID: 35685688
    [No Abstract]   [Full Text] [Related]  

  • 50. Hybrid Method of Automated EEG Signals' Selection Using Reversed Correlation Algorithm for Improved Classification of Emotions.
    Wosiak A; Dura A
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33321895
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multimodal fusion framework: a multiresolution approach for emotion classification and recognition from physiological signals.
    Verma GK; Tiwary US
    Neuroimage; 2014 Nov; 102 Pt 1():162-72. PubMed ID: 24269801
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimal Electrodermal Activity Segment for Enhanced Emotion Recognition Using Spectrogram-Based Feature Extraction and Machine Learning.
    P SK; Agastinose Ronickom JF
    Int J Neural Syst; 2024 May; 34(5):2450027. PubMed ID: 38511233
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multilevel analysis of facial expressions of emotion and script: self-report (arousal and valence) and psychophysiological correlates.
    Balconi M; Vanutelli ME; Finocchiaro R
    Behav Brain Funct; 2014 Sep; 10(1):32. PubMed ID: 25261242
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging.
    Kim HC; Bandettini PA; Lee JH
    Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Emotion recognition based on physiological changes in music listening.
    Kim J; André E
    IEEE Trans Pattern Anal Mach Intell; 2008 Dec; 30(12):2067-83. PubMed ID: 18988943
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Providing a Four-layer Method Based on Deep Belief Network to Improve Emotion Recognition in Electroencephalography in Brain Signals.
    Mousavinasr SMR; Pourmohammad A; Saffari MSM
    J Med Signals Sens; 2019; 9(2):77-87. PubMed ID: 31316901
    [TBL] [Abstract][Full Text] [Related]  

  • 57. K-EmoPhone: A Mobile and Wearable Dataset with In-Situ Emotion, Stress, and Attention Labels.
    Kang S; Choi W; Park CY; Cha N; Kim A; Khandoker AH; Hadjileontiadis L; Kim H; Jeong Y; Lee U
    Sci Data; 2023 Jun; 10(1):351. PubMed ID: 37268686
    [TBL] [Abstract][Full Text] [Related]  

  • 58. EEG-Based Emotion Classification Using Long Short-Term Memory Network with Attention Mechanism.
    Kim Y; Choi A
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255539
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Comparison of Personalized and Generalized Approaches to Emotion Recognition Using Consumer Wearable Devices: Machine Learning Study.
    Li J; Washington P
    JMIR AI; 2024 May; 3():e52171. PubMed ID: 38875573
    [TBL] [Abstract][Full Text] [Related]  

  • 60. EEG-based emotion estimation using Bayesian weighted-log-posterior function and perceptron convergence algorithm.
    Yoon HJ; Chung SY
    Comput Biol Med; 2013 Dec; 43(12):2230-7. PubMed ID: 24290940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.