These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 34891491)

  • 1. Analysis of Facial Electromyography Signals Using Linear and Non-Linear Features for Human-Machine Interface.
    Jayendhra S; Manuskandan SR; Joseph M; Navaneethakrishna M; Karthick PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1149-1152. PubMed ID: 34891491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emotion Recognition Using Spectral Feature from Facial Electromygraphy Signals for Human-Machine Interface.
    Shiva J; Makaram N; Karthick PA; Swaminathan R
    Stud Health Technol Inform; 2021 May; 281():486-487. PubMed ID: 34042613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The face of schadenfreude: Differentiation of joy and schadenfreude by electromyography.
    Boecker L; Likowski KU; Pauli P; Weyers P
    Cogn Emot; 2015; 29(6):1117-25. PubMed ID: 25297966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying the Optimal Location of Facial EMG for Emotion Detection Using Logistic Regression.
    Barigala VK; Sriram Kumar P ; Govarthan PK; Pj S; Aasaithambi M; Ganapathy N; Pa K; Kumar D; Agastinose Ronickom JF
    Stud Health Technol Inform; 2023 Jun; 305():81-84. PubMed ID: 37386963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG-based facial gesture recognition through versatile elliptic basis function neural network.
    Hamedi M; Salleh ShH; Astaraki M; Noor AM
    Biomed Eng Online; 2013 Jul; 12():73. PubMed ID: 23866903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of emotion-antecedent appraisal checks in electroencephalography and facial electromyography.
    Coutinho E; Gentsch K; van Peer J; Scherer KR; Schuller BW
    PLoS One; 2018; 13(1):e0189367. PubMed ID: 29293572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel approach for electromyography-controlled prostheses based on facial action.
    Zhang X; Li R; Li H; Lu Z; Hu Y; Alhassan AB
    Med Biol Eng Comput; 2020 Nov; 58(11):2685-2698. PubMed ID: 32862364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the Non-linear Response of the fSampEn on Simulated EMG Signals.
    Estrada-Petrocelli L; Lozano-Garcia M; Jane R; Torres A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5582-5585. PubMed ID: 34892389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine.
    Candra H; Yuwono M; Chai R; Handojoseno A; Elamvazuthi I; Nguyen HT; Su S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7250-3. PubMed ID: 26737965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Information-based analysis of the relationship between brain and facial muscle activities in response to static visual stimuli.
    Soundirarajan M; Pakniyat N; Sim S; Nathan V; Namazi H
    Technol Health Care; 2021; 29(1):99-109. PubMed ID: 32568131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of Intensive Valence and Arousal Affective States via Facial Electromyographic Activity in Young and Senior Adults.
    Tan JW; Andrade AO; Li H; Walter S; Hrabal D; Rukavina S; Limbrecht-Ecklundt K; Hoffman H; Traue HC
    PLoS One; 2016; 11(1):e0146691. PubMed ID: 26761427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unconscious facial reactions to emotional facial expressions.
    Dimberg U; Thunberg M; Elmehed K
    Psychol Sci; 2000 Jan; 11(1):86-9. PubMed ID: 11228851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency study of facial electromyography signals with respect to emotion recognition.
    Selvaraj J; Murugappan M; Wan K; Yaacob S
    Biomed Tech (Berl); 2014 Jun; 59(3):241-9. PubMed ID: 24402883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method.
    Taran S; Bajaj V
    Comput Methods Programs Biomed; 2019 May; 173():157-165. PubMed ID: 31046991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human facial neural activities and gesture recognition for machine-interfacing applications.
    Hamedi M; Salleh ShH; Tan TS; Ismail K; Ali J; Dee-Uam C; Pavaganun C; Yupapin PP
    Int J Nanomedicine; 2011; 6():3461-72. PubMed ID: 22267930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emotion recognition from physiological signals.
    Gouizi K; Bereksi Reguig F; Maaoui C
    J Med Eng Technol; 2011; 35(6-7):300-7. PubMed ID: 21936746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emotional valence sensing using a wearable facial EMG device.
    Sato W; Murata K; Uraoka Y; Shibata K; Yoshikawa S; Furuta M
    Sci Rep; 2021 Mar; 11(1):5757. PubMed ID: 33707605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emotional mimicry signals pain empathy as evidenced by facial electromyography.
    Sun YB; Wang YZ; Wang JY; Luo F
    Sci Rep; 2015 Dec; 5():16988. PubMed ID: 26647740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Objectifying facial expressivity assessment of Parkinson's patients: preliminary study.
    Wu P; Gonzalez I; Patsis G; Jiang D; Sahli H; Kerckhofs E; Vandekerckhove M
    Comput Math Methods Med; 2014; 2014():427826. PubMed ID: 25478003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromyographic evidence of reduced emotion mimicry in individuals with a history of non-suicidal self-injury.
    Ziebell L; Collin C; Mazalu M; Rainville S; Weippert M; Skolov M
    PLoS One; 2020; 15(12):e0243860. PubMed ID: 33370320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.