These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 34891505)

  • 1. Analysis of Plasma Skimming within a Hydrodynamic Bearing Gap for Designing Spiral Groove Bearings in Rotary Blood Pumps.
    Jiang M; Sakota D; Kosaka R; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1213-1217. PubMed ID: 34891505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of gap size and groove design of hydrodynamic bearing on plasma skimming effect for use in rotary blood pump.
    Jiang M; Sakota D; Kosaka R; Hijikata W
    J Artif Organs; 2022 Sep; 25(3):195-203. PubMed ID: 35088287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma Skimming in a Spiral Groove Bearing of a Centrifugal Blood Pump.
    Murashige T; Sakota D; Kosaka R; Nishida M; Kawaguchi Y; Yamane T; Maruyama O
    Artif Organs; 2016 Sep; 40(9):856-66. PubMed ID: 27645396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating Plasma Skimming with Whole Blood in Small Gap Region Imitating Clearance of Blood Pumps.
    Jiang M; Murashige T; Sakota D; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5665-5669. PubMed ID: 31947138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma skimming efficiency of human blood in the spiral groove bearing of a centrifugal blood pump.
    Sakota D; Kondo K; Kosaka R; Nishida M; Maruyama O
    J Artif Organs; 2021 Jun; 24(2):126-134. PubMed ID: 33113050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of erythrocyte flow at a bearing gap in a hydrodynamically levitated centrifugal blood pump.
    Murashige T; Kosaka R; Sakota D; Nishida M; Kawaguchi Y; Yamane T; Maruyama O
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():270-3. PubMed ID: 26736252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences between blood and a Newtonian fluid on the performance of a hydrodynamic bearing for rotary blood pumps.
    Amaral F; Egger C; Steinseifer U; Schmitz-Rode T
    Artif Organs; 2013 Sep; 37(9):786-92. PubMed ID: 23980561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the Axial Gap Clearance in a Hydrodynamic-Passive Magnetically Levitated Rotary Blood Pump Using X-Ray Radiography.
    Thamsen B; Plamondon M; Granegger M; Schmid Daners M; Kaufmann R; Neels A; Meboldt M
    Artif Organs; 2018 May; 42(5):510-515. PubMed ID: 29341175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concept for a new hydrodynamic blood bearing for miniature blood pumps.
    Kink T; Reul H
    Artif Organs; 2004 Oct; 28(10):916-20. PubMed ID: 15384998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The spiral groove bearing as a mechanism for enhancing the secondary flow in a centrifugal rotary blood pump.
    Amaral F; Gross-Hardt S; Timms D; Egger C; Steinseifer U; Schmitz-Rode T
    Artif Organs; 2013 Oct; 37(10):866-74. PubMed ID: 23635098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of hemocompatibility for hydrodynamic levitation centrifugal pump by optimizing step bearings.
    Kosaka R; Yada T; Nishida M; Maruyama O; Yamane T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1331-4. PubMed ID: 22254562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applicability of Narrow Groove Theory in Designing Washout Features for Rotary Blood Pumps
    Bieritz SA; Alex Smith P; Wang Y; Cohn WE; Grande-Allen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5419-5424. PubMed ID: 34892352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and analytical performance evaluation of short circular hydrodynamic journal bearings used in rotary blood pumps.
    Boehning F; Timms D; Hsu PL; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2013 Oct; 37(10):913-20. PubMed ID: 23634963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump.
    Han Q; Zou J; Ruan X; Fu X; Yang H
    Artif Organs; 2012 Aug; 36(8):739-46. PubMed ID: 22747897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple method for the investigation of cell separation effects of blood with physiological hematocrit values.
    Gester K; Jansen SV; Stahl M; Steinseifer U
    Artif Organs; 2015 May; 39(5):432-40. PubMed ID: 25377596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A passive magnetically and hydrodynamically suspended rotary blood pump.
    Stoiber M; Grasl C; Pirker S; Raderer F; Schistek R; Huber L; Gittler P; Schima H
    Artif Organs; 2009 Mar; 33(3):250-7. PubMed ID: 19245524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a portable bridge-to-decision blood pump.
    Yamane T; Kitamura K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2728-31. PubMed ID: 24110291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of a bearing gap on hemolytic property in a hydrodynamically levitated centrifugal blood pump with a semi-open impeller.
    Kosaka R; Nishida M; Maruyama O; Yambe T; Imachi K; Yamane T
    Biomed Mater Eng; 2013; 23(1-2):37-47. PubMed ID: 23442235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of hemocompatibility in centrifugal blood pump with hydrodynamic bearings and semi-open impeller: in vitro evaluation.
    Kosaka R; Maruyama O; Nishida M; Yada T; Saito S; Hirai S; Yamane T
    Artif Organs; 2009 Oct; 33(10):798-804. PubMed ID: 19681836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A two-stage rotary blood pump design with potentially lower blood trauma: a computational study.
    Thamsen B; Mevert R; Lommel M; Preikschat P; Gaebler J; Krabatsch T; Kertzscher U; Hennig E; Affeld K
    Int J Artif Organs; 2016 Jun; 39(4):178-83. PubMed ID: 27034319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.