These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34891651)

  • 1. Recurrent Neural Network Models for Blood Pressure Monitoring Using PPG Morphological Features.
    El Hajj C; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1865-1868. PubMed ID: 34891651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cuffless and Continuous Blood Pressure Estimation From PPG Signals Using Recurrent Neural Networks.
    El Hajj C; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4269-4272. PubMed ID: 33018939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel CNN-LSTM Model Based Non-Invasive Cuff-Less Blood Pressure Estimation System.
    Nandi P; Rao M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():832-836. PubMed ID: 36086017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
    Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y
    Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms.
    Baker S; Xiang W; Atkinson I
    Comput Methods Programs Biomed; 2021 Aug; 207():106191. PubMed ID: 34077866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cuff-Less Blood Pressure Estimation via Small Convolutional Neural Networks.
    Wang W; Mohseni P; Kilgore K; Najafizadeh L
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1031-1034. PubMed ID: 34891464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network.
    Khodabakhshi MB; Eslamyeh N; Sadredini SZ; Ghamari M
    Comput Methods Programs Biomed; 2022 Nov; 226():107131. PubMed ID: 36137326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concatenated convolutional neural network model for cuffless blood pressure estimation using fuzzy recurrence properties of photoplethysmogram signals.
    Malayeri AB; Khodabakhshi MB
    Sci Rep; 2022 Apr; 12(1):6633. PubMed ID: 35459260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model.
    Li Z; He W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Blood Pressure Estimation From Non-Invasive Measurements Using Support Vector Regression.
    Rastegar A S; GholamHosseini A H; Lowe A A; Linden B M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1487-1490. PubMed ID: 34891566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid CNN-SVR Blood Pressure Estimation Model Using ECG and PPG Signals.
    Rastegar S; Gholam Hosseini H; Lowe A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multistage deep neural network model for blood pressure estimation using photoplethysmogram signals.
    Esmaelpoor J; Moradi MH; Kadkhodamohammadi A
    Comput Biol Med; 2020 May; 120():103719. PubMed ID: 32421641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals.
    Mahmud S; Ibtehaz N; Khandakar A; Tahir AM; Rahman T; Islam KR; Hossain MS; Rahman MS; Musharavati F; Ayari MA; Islam MT; Chowdhury MEH
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cuff-Less Blood Pressure Estimation From Photoplethysmography via Visibility Graph and Transfer Learning.
    Wang W; Mohseni P; Kilgore KL; Najafizadeh L
    IEEE J Biomed Health Inform; 2022 May; 26(5):2075-2085. PubMed ID: 34784289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation.
    Harfiya LN; Chang CC; Li YH
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized Deep Neural Network Model for Cuffless Blood Pressure Estimation with Photoplethysmogram Signal Only.
    Hsu YC; Li YH; Chang CC; Harfiya LN
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33020401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature Learning for Blood Pressure Estimation from Photoplethysmography.
    Aguet C; Zaen JV; Jorge J; Proenca M; Bonnier G; Frossard P; Lemay M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():463-466. PubMed ID: 34891333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cuff-less Blood Pressure Measurement Using Supplementary ECG and PPG Features Extracted Through Wavelet Transformation.
    Singla M; Sistla P; Azeemuddin S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4628-4631. PubMed ID: 31946895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method for continuous blood pressure estimation based on a single-channel photoplethysmogram signal.
    Hu Q; Deng X; Wang A; Yang C
    Physiol Meas; 2021 Jan; 41(12):125009. PubMed ID: 33166940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.