These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
590 related articles for article (PubMed ID: 34891654)
1. HCNM: Heterogeneous Correlation Network Model for Multi-level Integrative Study of Multi-omics Data for Cancer Subtype Prediction. Vangimalla RR; Sreevalsan-Nair J Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1880-1886. PubMed ID: 34891654 [TBL] [Abstract][Full Text] [Related]
2. A multimodal graph neural network framework for cancer molecular subtype classification. Li B; Nabavi S BMC Bioinformatics; 2024 Jan; 25(1):27. PubMed ID: 38225583 [TBL] [Abstract][Full Text] [Related]
3. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification. Wu D; Wang D; Zhang MQ; Gu J BMC Genomics; 2015 Dec; 16():1022. PubMed ID: 26626453 [TBL] [Abstract][Full Text] [Related]
4. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping. Madhumita ; Paul S Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966 [TBL] [Abstract][Full Text] [Related]
5. Integrating Multi-Omic Data With Deep Subspace Fusion Clustering for Cancer Subtype Prediction. Yang B; Zhang Y; Pang S; Shang X; Zhao X; Han M IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):216-226. PubMed ID: 31689204 [TBL] [Abstract][Full Text] [Related]
6. Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets. Wei Z; Zhang Y; Weng W; Chen J; Cai H Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32533167 [TBL] [Abstract][Full Text] [Related]
7. COPS: A novel platform for multi-omic disease subtype discovery via robust multi-objective evaluation of clustering algorithms. Rintala TJ; Fortino V PLoS Comput Biol; 2024 Aug; 20(8):e1012275. PubMed ID: 39102448 [TBL] [Abstract][Full Text] [Related]
8. Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping. Zhu S; Wang W; Fang W; Cui M Math Biosci Eng; 2023 Nov; 20(12):21098-21119. PubMed ID: 38124589 [TBL] [Abstract][Full Text] [Related]
9. Multi-omics data fusion using adaptive GTO guided Non-negative matrix factorization for cancer subtype discovery. Bansal B; Sahoo A Comput Methods Programs Biomed; 2023 Jan; 228():107246. PubMed ID: 36434961 [TBL] [Abstract][Full Text] [Related]
10. A denoised multi-omics integration framework for cancer subtype classification and survival prediction. Pang J; Liang B; Ding R; Yan Q; Chen R; Xu J Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37594302 [TBL] [Abstract][Full Text] [Related]
11. A Similarity Regression Fusion Model for Integrating Multi-Omics Data to Identify Cancer Subtypes. Guo Y; Zheng J; Shang X; Li Z Genes (Basel); 2018 Jun; 9(7):. PubMed ID: 29933539 [TBL] [Abstract][Full Text] [Related]
12. Integrative subspace clustering by common and specific decomposition for applications on cancer subtype identification. Guo Y; Li H; Cai M; Li L BMC Med Genomics; 2019 Dec; 12(Suppl 9):191. PubMed ID: 31874642 [TBL] [Abstract][Full Text] [Related]
13. Multi-omics clustering for cancer subtyping based on latent subspace learning. Ye X; Shang Y; Shi T; Zhang W; Sakurai T Comput Biol Med; 2023 Sep; 164():107223. PubMed ID: 37490833 [TBL] [Abstract][Full Text] [Related]
14. Deep structure integrative representation of multi-omics data for cancer subtyping. Yang B; Yang Y; Su X Bioinformatics; 2022 Jun; 38(13):3337-3342. PubMed ID: 35639657 [TBL] [Abstract][Full Text] [Related]
15. MDICC: novel method for multi-omics data integration and cancer subtype identification. Yang Y; Tian S; Qiu Y; Zhao P; Zou Q Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35437603 [TBL] [Abstract][Full Text] [Related]
17. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data. Rong Z; Liu Z; Song J; Cao L; Yu Y; Qiu M; Hou Y Comput Biol Med; 2022 Nov; 150():106085. PubMed ID: 36162197 [TBL] [Abstract][Full Text] [Related]
18. MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis. Li X; Ma J; Leng L; Han M; Li M; He F; Zhu Y Front Genet; 2022; 13():806842. PubMed ID: 35186034 [TBL] [Abstract][Full Text] [Related]
19. Network-based integrative clustering of multiple types of genomic data using non-negative matrix factorization. Chalise P; Ni Y; Fridley BL Comput Biol Med; 2020 Mar; 118():103625. PubMed ID: 31999549 [TBL] [Abstract][Full Text] [Related]
20. Randomized singular value decomposition for integrative subtype analysis of 'omics data' using non-negative matrix factorization. Ni Y; He J; Chalise P Stat Appl Genet Mol Biol; 2023 Jan; 22(1):. PubMed ID: 37937887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]