These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 34891706)
1. Two Eyes Are Better Than One: Exploiting Binocular Correlation for Diabetic Retinopathy Severity Grading. Qian P; Zhao Z; Chen C; Zeng Z; Li X Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2115-2118. PubMed ID: 34891706 [TBL] [Abstract][Full Text] [Related]
2. A novel approach for intelligent diagnosis and grading of diabetic retinopathy. Hai Z; Zou B; Xiao X; Peng Q; Yan J; Zhang W; Yue K Comput Biol Med; 2024 Apr; 172():108246. PubMed ID: 38471350 [TBL] [Abstract][Full Text] [Related]
3. Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images. Islam MR; Abdulrazak LF; Nahiduzzaman M; Goni MOF; Anower MS; Ahsan M; Haider J; Kowalski M Comput Biol Med; 2022 Jul; 146():105602. PubMed ID: 35569335 [TBL] [Abstract][Full Text] [Related]
4. CauDR: A causality-inspired domain generalization framework for fundus-based diabetic retinopathy grading. Wei H; Shi P; Miao J; Zhang M; Bai G; Qiu J; Liu F; Yuan W Comput Biol Med; 2024 Jun; 175():108459. PubMed ID: 38701588 [TBL] [Abstract][Full Text] [Related]
5. Coarse-to-fine classification for diabetic retinopathy grading using convolutional neural network. Wu Z; Shi G; Chen Y; Shi F; Chen X; Coatrieux G; Yang J; Luo L; Li S Artif Intell Med; 2020 Aug; 108():101936. PubMed ID: 32972665 [TBL] [Abstract][Full Text] [Related]
6. Assessment of diabetic retinopathy using two ultra-wide-field fundus imaging systems, the Clarus® and Optos™ systems. Hirano T; Imai A; Kasamatsu H; Kakihara S; Toriyama Y; Murata T BMC Ophthalmol; 2018 Dec; 18(1):332. PubMed ID: 30572870 [TBL] [Abstract][Full Text] [Related]
7. Leveraging Multimodal Deep Learning Architecture with Retina Lesion Information to Detect Diabetic Retinopathy. Tseng VS; Chen CL; Liang CM; Tai MC; Liu JT; Wu PY; Deng MS; Lee YW; Huang TY; Chen YH Transl Vis Sci Technol; 2020 Jul; 9(2):41. PubMed ID: 32855845 [TBL] [Abstract][Full Text] [Related]
8. Non-uniform Label Smoothing for Diabetic Retinopathy Grading from Retinal Fundus Images with Deep Neural Networks. Galdran A; Chelbi J; Kobi R; Dolz J; Lombaert H; Ben Ayed I; Chakor H Transl Vis Sci Technol; 2020 Jun; 9(2):34. PubMed ID: 32832207 [TBL] [Abstract][Full Text] [Related]
9. Interaction Between the Distribution of Diabetic Retinopathy Lesions and the Association of Optical Coherence Tomography Angiography Scans With Diabetic Retinopathy Severity. Ashraf M; Sampani K; Rageh A; Silva PS; Aiello LP; Sun JK JAMA Ophthalmol; 2020 Dec; 138(12):1291-1297. PubMed ID: 33119083 [TBL] [Abstract][Full Text] [Related]
10. Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning. Sugeno A; Ishikawa Y; Ohshima T; Muramatsu R Comput Biol Med; 2021 Oct; 137():104795. PubMed ID: 34488028 [TBL] [Abstract][Full Text] [Related]
11. Improved Automatic Grading of Diabetic Retinopathy Using Deep Learning and Principal Component Analysis. Mohamed E; Elmohsen MA; Basha T Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3898-3901. PubMed ID: 34892084 [TBL] [Abstract][Full Text] [Related]
12. Classification of Diabetic Retinopathy Severity in Fundus Images Using the Vision Transformer and Residual Attention. Gu Z; Li Y; Wang Z; Kan J; Shu J; Wang Q Comput Intell Neurosci; 2023; 2023():1305583. PubMed ID: 36636467 [TBL] [Abstract][Full Text] [Related]
13. Automatic severity grade classification of diabetic retinopathy using deformable ladder Bi attention U-net and deep adaptive CNN. Durai DBJ; Jaya T Med Biol Eng Comput; 2023 Aug; 61(8):2091-2113. PubMed ID: 37338737 [TBL] [Abstract][Full Text] [Related]
14. Digital retinal images and teleophthalmology for detecting and grading diabetic retinopathy. Gómez-Ulla F; Fernandez MI; Gonzalez F; Rey P; Rodriguez M; Rodriguez-Cid MJ; Casanueva FF; Tome MA; Garcia-Tobio J; Gude F Diabetes Care; 2002 Aug; 25(8):1384-9. PubMed ID: 12145239 [TBL] [Abstract][Full Text] [Related]
15. A new ultra-wide-field fundus dataset to diabetic retinopathy grading using hybrid preprocessing methods. Liu H; Teng L; Fan L; Sun Y; Li H Comput Biol Med; 2023 May; 157():106750. PubMed ID: 36931202 [TBL] [Abstract][Full Text] [Related]
17. Transfer Learning for Automated OCTA Detection of Diabetic Retinopathy. Le D; Alam M; Yao CK; Lim JI; Hsieh YT; Chan RVP; Toslak D; Yao X Transl Vis Sci Technol; 2020 Jul; 9(2):35. PubMed ID: 32855839 [TBL] [Abstract][Full Text] [Related]
18. DR-GAN: Conditional Generative Adversarial Network for Fine-Grained Lesion Synthesis on Diabetic Retinopathy Images. Zhou Y; Wang B; He X; Cui S; Shao L IEEE J Biomed Health Inform; 2022 Jan; 26(1):56-66. PubMed ID: 33332280 [TBL] [Abstract][Full Text] [Related]
19. An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs. Li Z; Keel S; Liu C; He Y; Meng W; Scheetz J; Lee PY; Shaw J; Ting D; Wong TY; Taylor H; Chang R; He M Diabetes Care; 2018 Dec; 41(12):2509-2516. PubMed ID: 30275284 [TBL] [Abstract][Full Text] [Related]
20. Deep attentive convolutional neural network for automatic grading of imbalanced diabetic retinopathy in retinal fundus images. Li F; Tang S; Chen Y; Zou H Biomed Opt Express; 2022 Nov; 13(11):5813-5835. PubMed ID: 36733744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]