These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 34891804)

  • 1. Conditional Generative Adversarial Networks for low-dose CT image denoising aiming at preservation of critical image content.
    Kusters KC; Zavala-Mondragon LA; Bescos JO; Rongen P; de With PHN; van der Sommen F
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2682-2687. PubMed ID: 34891804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image denoising by transfer learning of generative adversarial network for dental CT.
    Hegazy MAA; Cho MH; Lee SY
    Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-dose sinogram restoration enabled by conditional GAN with cross-domain regularization in SPECT imaging.
    Li S; Peng L; Li F; Liang Z
    Math Biosci Eng; 2023 Mar; 20(6):9728-9758. PubMed ID: 37322909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information.
    Tang C; Li J; Wang L; Li Z; Jiang L; Cai A; Zhang W; Liang N; Li L; Yan B
    Comput Math Methods Med; 2019; 2019():8639825. PubMed ID: 31885686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-dose CT denoising using a Progressive Wasserstein generative adversarial network.
    Wang G; Hu X
    Comput Biol Med; 2021 Aug; 135():104625. PubMed ID: 34246157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing image artifacts in sparse projection CT using conditional generative adversarial networks.
    Usui K; Kamiyama S; Arita A; Ogawa K; Sakamoto H; Sakano Y; Kyogoku S; Daida H
    Sci Rep; 2024 Feb; 14(1):3917. PubMed ID: 38365934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generative models improve radiomics reproducibility in low dose CTs: a simulation study.
    Chen J; Zhang C; Traverso A; Zhovannik I; Dekker A; Wee L; Bermejo I
    Phys Med Biol; 2021 Aug; 66(16):. PubMed ID: 34289463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
    Li M; Du Q; Duan L; Yang X; Zheng J; Jiang H; Li M
    Med Phys; 2021 Jun; 48(6):2973-2990. PubMed ID: 33890681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Texture transformer super-resolution for low-dose computed tomography.
    Zhou S; Yu L; Jin M
    Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36301699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sharpness-Aware Low-Dose CT Denoising Using Conditional Generative Adversarial Network.
    Yi X; Babyn P
    J Digit Imaging; 2018 Oct; 31(5):655-669. PubMed ID: 29464432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
    Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D
    Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Medical Image Denoising Method Based on Conditional Generative Adversarial Network.
    Li Y; Zhang K; Shi W; Miao Y; Jiang Z
    Comput Math Methods Med; 2021; 2021():9974017. PubMed ID: 34621329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generative adversarial network with radiomic feature reproducibility analysis for computed tomography denoising.
    Lee J; Jeon J; Hong Y; Jeong D; Jang Y; Jeon B; Baek HJ; Cho E; Shim H; Chang HJ
    Comput Biol Med; 2023 Jun; 159():106931. PubMed ID: 37116238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional generative adversarial networks to generate pseudo low monoenergetic CT image from a single-tube voltage CT scanner.
    Funama Y; Oda S; Kidoh M; Nagayama Y; Goto M; Sakabe D; Nakaura T
    Phys Med; 2021 Mar; 83():46-51. PubMed ID: 33706150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artifact and Detail Attention Generative Adversarial Networks for Low-Dose CT Denoising.
    Zhang X; Han Z; Shangguan H; Han X; Cui X; Wang A
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3901-3918. PubMed ID: 34329159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-sequence MR image-based synthetic CT generation using a generative adversarial network for head and neck MRI-only radiotherapy.
    Qi M; Li Y; Wu A; Jia Q; Li B; Sun W; Dai Z; Lu X; Zhou L; Deng X; Song T
    Med Phys; 2020 Apr; 47(4):1880-1894. PubMed ID: 32027027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical validation of enhanced CT imaging for distal radius fractures through conditional Generative Adversarial Networks (cGAN).
    Kim H; Ryu SM; Keum JS; Oh SI; Kim KN; Shin YH; Jeon IH; Koh KH
    PLoS One; 2024; 19(8):e0308346. PubMed ID: 39150966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CT artifact correction for sparse and truncated projection data using generative adversarial networks.
    Podgorsak AR; Shiraz Bhurwani MM; Ionita CN
    Med Phys; 2021 Feb; 48(2):615-626. PubMed ID: 32996149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of low-dose PET image recovery using supervised learning with CycleGAN.
    Zhao K; Zhou L; Gao S; Wang X; Wang Y; Zhao X; Wang H; Liu K; Zhu Y; Ye H
    PLoS One; 2020; 15(9):e0238455. PubMed ID: 32886683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.