These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34891883)

  • 1. Lesion Border Detection of Skin Cancer Images Using Deep Fully Convolutional Neural Network with Customized Weights.
    Kaur R; Hosseini HG; Sinha R
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3035-3038. PubMed ID: 34891883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic lesion segmentation using atrous convolutional deep neural networks in dermoscopic skin cancer images.
    Kaur R; GholamHosseini H; Sinha R; Lindén M
    BMC Med Imaging; 2022 May; 22(1):103. PubMed ID: 35644612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.
    Tang P; Liang Q; Yan X; Xiang S; Sun W; Zhang D; Coppola G
    Comput Methods Programs Biomed; 2019 Sep; 178():289-301. PubMed ID: 31416556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks.
    Al-Masni MA; Al-Antari MA; Choi MT; Han SM; Kim TS
    Comput Methods Programs Biomed; 2018 Aug; 162():221-231. PubMed ID: 29903489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images.
    Iqbal I; Younus M; Walayat K; Kakar MU; Ma J
    Comput Med Imaging Graph; 2021 Mar; 88():101843. PubMed ID: 33445062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation.
    Lama N; Stanley RJ; Lama B; Maurya A; Nambisan A; Hagerty J; Phan T; Van Stoecker W
    J Imaging Inform Med; 2024 Aug; 37(4):1812-1823. PubMed ID: 38409610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully Convolutional Neural Networks to Detect Clinical Dermoscopic Features.
    Kawahara J; Hamarneh G
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):578-585. PubMed ID: 29994053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmentation of dermoscopy images based on deformable 3D convolution and ResU-NeXt +.
    Zhao C; Shuai R; Ma L; Liu W; Wu M
    Med Biol Eng Comput; 2021 Sep; 59(9):1815-1832. PubMed ID: 34304370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.
    Baig R; Bibi M; Hamid A; Kausar S; Khalid S
    Curr Med Imaging; 2020; 16(5):513-533. PubMed ID: 32484086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skin Lesion Segmentation from Dermoscopic Images Using Convolutional Neural Network.
    Zafar K; Gilani SO; Waris A; Ahmed A; Jamil M; Khan MN; Sohail Kashif A
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain-specific classification-pretrained fully convolutional network encoders for skin lesion segmentation.
    Tschandl P; Sinz C; Kittler H
    Comput Biol Med; 2019 Jan; 104():111-116. PubMed ID: 30471461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dense pooling layers in fully convolutional network for skin lesion segmentation.
    Nasr-Esfahani E; Rafiei S; Jafari MH; Karimi N; Wrobel JS; Samavi S; Reza Soroushmehr SM
    Comput Med Imaging Graph; 2019 Dec; 78():101658. PubMed ID: 31634739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification.
    Al-Masni MA; Kim DH; Kim TS
    Comput Methods Programs Biomed; 2020 Jul; 190():105351. PubMed ID: 32028084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melanoma Classification Using a Novel Deep Convolutional Neural Network with Dermoscopic Images.
    Kaur R; GholamHosseini H; Sinha R; Lindén M
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms.
    Alsaade FW; Aldhyani THH; Al-Adhaileh MH
    Comput Math Methods Med; 2021; 2021():9998379. PubMed ID: 34055044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S
    Alam MJ; Mohammad MS; Hossain MAF; Showmik IA; Raihan MS; Ahmed S; Mahmud T
    Comput Biol Med; 2022 Nov; 150():106148. PubMed ID: 36252363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skin Lesion Segmentation in Dermoscopic Images with Noisy Data.
    Lama N; Hagerty J; Nambisan A; Stanley RJ; Van Stoecker W
    J Digit Imaging; 2023 Aug; 36(4):1712-1722. PubMed ID: 37020149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering.
    Nida N; Irtaza A; Javed A; Yousaf MH; Mahmood MT
    Int J Med Inform; 2019 Apr; 124():37-48. PubMed ID: 30784425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusing fine-tuned deep features for skin lesion classification.
    Mahbod A; Schaefer G; Ellinger I; Ecker R; Pitiot A; Wang C
    Comput Med Imaging Graph; 2019 Jan; 71():19-29. PubMed ID: 30458354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melanoma segmentation using deep learning with test-time augmentations and conditional random fields.
    Ashraf H; Waris A; Ghafoor MF; Gilani SO; Niazi IK
    Sci Rep; 2022 Mar; 12(1):3948. PubMed ID: 35273282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.