These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34891889)

  • 1. Hierarchical Attentional Feature Fusion for Surgical Instrument Segmentation.
    Zhou X; Guo Y; He W; Song H
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3061-3065. PubMed ID: 34891889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ST-MTL: Spatio-Temporal multitask learning model to predict scanpath while tracking instruments in robotic surgery.
    Islam M; Vs V; Lim CM; Ren H
    Med Image Anal; 2021 Jan; 67():101837. PubMed ID: 33129153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CGBA-Net: context-guided bidirectional attention network for surgical instrument segmentation.
    Wang Y; Hu Y; Shen J; Zhang X; Li H; Qiu Z; Ye F; Liu J
    Int J Comput Assist Radiol Surg; 2023 Oct; 18(10):1769-1781. PubMed ID: 37199827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surgical-DeSAM: decoupling SAM for instrument segmentation in robotic surgery.
    Sheng Y; Bano S; Clarkson MJ; Islam M
    Int J Comput Assist Radiol Surg; 2024 Jul; 19(7):1267-1271. PubMed ID: 38758289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An attention-guided network for surgical instrument segmentation from endoscopic images.
    Yang L; Gu Y; Bian G; Liu Y
    Comput Biol Med; 2022 Dec; 151(Pt A):106216. PubMed ID: 36356389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Branch Aggregation Attention Network for Robotic Surgical Instrument Segmentation.
    Shen W; Wang Y; Liu M; Wang J; Ding R; Zhang Z; Meijering E
    IEEE Trans Med Imaging; 2023 Nov; 42(11):3408-3419. PubMed ID: 37342952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. U-NetPlus: A Modified Encoder-Decoder U-Net Architecture for Semantic and Instance Segmentation of Surgical Instruments from Laparoscopic Images.
    Kamrul Hasan SM; Linte CA
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():7205-7211. PubMed ID: 31947497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mask then classify: multi-instance segmentation for surgical instruments.
    Kurmann T; Márquez-Neila P; Allan M; Wolf S; Sznitman R
    Int J Comput Assist Radiol Surg; 2021 Jul; 16(7):1227-1236. PubMed ID: 34143374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. InstrumentNet: An integrated model for real-time segmentation of intracranial surgical instruments.
    Liu Z; Zheng L; Gu L; Yang S; Zhong Z; Zhang G
    Comput Biol Med; 2023 Nov; 166():107565. PubMed ID: 37839219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RASNet: Segmentation for Tracking Surgical Instruments in Surgical Videos Using Refined Attention Segmentation Network.
    Ni ZL; Bian GB; Xie XL; Hou ZG; Zhou XH; Zhou YJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5735-5738. PubMed ID: 31947155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilateral attention decoder: A lightweight decoder for real-time semantic segmentation.
    Peng C; Tian T; Chen C; Guo X; Ma J
    Neural Netw; 2021 May; 137():188-199. PubMed ID: 33647536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inpainting surgical occlusion from laparoscopic video sequences for robot-assisted interventions.
    Hasan SMK; Simon RA; Linte CA
    J Med Imaging (Bellingham); 2023 Jul; 10(4):045002. PubMed ID: 37649957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A parallel network utilizing local features and global representations for segmentation of surgical instruments.
    Sun X; Zou Y; Wang S; Su H; Guan B
    Int J Comput Assist Radiol Surg; 2022 Oct; 17(10):1903-1913. PubMed ID: 35680692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FUN-SIS: A Fully UNsupervised approach for Surgical Instrument Segmentation.
    Sestini L; Rosa B; De Momi E; Ferrigno G; Padoy N
    Med Image Anal; 2023 Apr; 85():102751. PubMed ID: 36716700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vestibule segmentation from CT images with integration of multiple deep feature fusion strategies.
    Zhang R; Zhuo L; Zhang H; Zhang Y; Kim J; Yin H; Zhao P; Wang Z
    Comput Med Imaging Graph; 2021 Apr; 89():101872. PubMed ID: 33578221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SLMFNet: Enhancing land cover classification of remote sensing images through selective attentions and multi-level feature fusion.
    Li X; Zhao H; Wu D; Liu Q; Tang R; Li L; Xu Z; Lyu X
    PLoS One; 2024; 19(5):e0301134. PubMed ID: 38743645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discriminative Feature Network Based on a Hierarchical Attention Mechanism for Semantic Hippocampus Segmentation.
    Shi J; Zhang R; Guo L; Gao L; Ma H; Wang J
    IEEE J Biomed Health Inform; 2021 Feb; 25(2):504-513. PubMed ID: 32406848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential vessel segmentation via deep channel attention network.
    Hao D; Ding S; Qiu L; Lv Y; Fei B; Zhu Y; Qin B
    Neural Netw; 2020 Aug; 128():172-187. PubMed ID: 32447262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate instance segmentation of surgical instruments in robotic surgery: model refinement and cross-dataset evaluation.
    Kong X; Jin Y; Dou Q; Wang Z; Wang Z; Lu B; Dong E; Liu YH; Sun D
    Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1607-1614. PubMed ID: 34173182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breast ultrasound image segmentation: A coarse-to-fine fusion convolutional neural network.
    Wang K; Liang S; Zhong S; Feng Q; Ning Z; Zhang Y
    Med Phys; 2021 Aug; 48(8):4262-4278. PubMed ID: 34053092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.