BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34891944)

  • 1. Binary Pattern Color Doppler Shear Wave Elastography
    Hermawan N; Sato A; Fujiwara M; Ishii T; Hagiwara Y; Yamakoshi Y; Saijo Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3293-3296. PubMed ID: 34891944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Color Doppler shear wave elastography using commercial ultrasound machine with compensated transducer scanning delay.
    Hermawan N; Ishii T; Saijo Y
    J Med Ultrason (2001); 2022 Apr; 49(2):163-173. PubMed ID: 35229246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear Wave Imaging of Breast Tissue by Color Doppler Shear Wave Elastography.
    Yamakoshi Y; Nakajima T; Kasahara T; Yamazaki M; Koda R; Sunaguchi N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Feb; 64(2):340-348. PubMed ID: 27845658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Scholte wave approach for ultrasonic surface acoustic wave elastography.
    Liu J; Leer J; Aglayomov SR; Emelianov SY
    Med Phys; 2023 Jul; 50(7):4138-4150. PubMed ID: 36971512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New Criterion for Shear Wave Elastometric Assessment Using Modulus of Stiffness Difference between Object and Environment.
    Demin IY; Rykhtik PI; Spivak АE; Safonov DV
    Sovrem Tekhnologii Med; 2022; 14(5):5-13. PubMed ID: 37181832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of skeletal muscle elasticity using color Doppler shear wave imaging.
    Kanaya Y; Konno K; Yamakoshi Y; Taniguchi N; Watanabe H; Takeshita K
    J Ultrasound; 2024 Mar; 27(1):51-59. PubMed ID: 37341893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Color-Doppler Shear-Wave-Imaging Phase-reconstruction Method Using Four Color Flow Images.
    Sunaguchi N; Yamakoshi Y; Nakajima T
    Ultrason Imaging; 2017 May; 39(3):172-188. PubMed ID: 27903789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear Wave Wavefront Mapping Using Ultrasound Color Flow Imaging.
    Yamakoshi Y; Kasahara T; Iijima T; Yuminaka Y
    Ultrason Imaging; 2015 Oct; 37(4):323-40. PubMed ID: 25628095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. B-line Elastography Measurement of Lung Parenchymal Elasticity.
    Koda R; Taniguchi H; Konno K; Yamakoshi Y
    Ultrason Imaging; 2023 Jan; 45(1):30-41. PubMed ID: 36631936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
    Amador Carrascal C; Chen S; Urban MW; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):3-13. PubMed ID: 29283342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of strain and shear-wave elastography in an elasticity phantom.
    Carlsen JF; Pedersen MR; Ewertsen C; Săftoiu A; Lönn L; Rafaelsen SR; Nielsen MB
    AJR Am J Roentgenol; 2015 Mar; 204(3):W236-42. PubMed ID: 25714307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear Wave Generation by Remotely Stimulating Aluminum Patches With a Transient Magnetic Field and Its Preliminary Application in Elastography.
    Sun Z; Giammarinaro B; Birer A; Liu G; Catheline S
    IEEE Trans Biomed Eng; 2021 Jul; 68(7):2129-2139. PubMed ID: 33001796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear wave velocity imaging using transient electrode perturbation: phantom and ex vivo validation.
    DeWall RJ; Varghese T; Madsen EL
    IEEE Trans Med Imaging; 2011 Mar; 30(3):666-78. PubMed ID: 21075719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
    Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S
    Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of five viscoelastic models for estimating viscoelastic parameters using ultrasound shear wave elastography.
    Zhou B; Zhang X
    J Mech Behav Biomed Mater; 2018 Sep; 85():109-116. PubMed ID: 29879581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arterial Stiffness Estimation by Shear Wave Elastography: Validation in Phantoms with Mechanical Testing.
    Maksuti E; Widman E; Larsson D; Urban MW; Larsson M; Bjällmark A
    Ultrasound Med Biol; 2016 Jan; 42(1):308-21. PubMed ID: 26454623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetorheological Gel Mimicking Cervical Ripening as a Potential Model for Evaluating Shear Wave Elastography.
    Ge W; Brooker G; Woo J; Rae W; Liu Y; Hyett J
    Ultrasound Med Biol; 2020 Sep; 46(9):2472-2480. PubMed ID: 32616430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comb-push ultrasound shear elastography (CUSE): a novel method for two-dimensional shear elasticity imaging of soft tissues.
    Song P; Zhao H; Manduca A; Urban MW; Greenleaf JF; Chen S
    IEEE Trans Med Imaging; 2012 Sep; 31(9):1821-32. PubMed ID: 22736690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vitro Comparison of Five Different Elastography Systems for Clinical Applications, Using Strain and Shear Wave Technology.
    Mulabecirovic A; Vesterhus M; Gilja OH; Havre RF
    Ultrasound Med Biol; 2016 Nov; 42(11):2572-2588. PubMed ID: 27570209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.