These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34891985)

  • 1. A CNN and LSTM Network for Eye-Blink Classification from MRI Scanner Monitoring Videos.
    Bennett R; Joshi SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3463-3466. PubMed ID: 34891985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic resonance-based eye tracking using deep neural networks.
    Frey M; Nau M; Doeller CF
    Nat Neurosci; 2021 Dec; 24(12):1772-1779. PubMed ID: 34750593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks.
    Li H; Fan Y
    Neuroimage; 2019 Nov; 202():116059. PubMed ID: 31362049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaze Tracking Based on Concatenating Spatial-Temporal Features.
    Hwang BJ; Chen HH; Hsieh CH; Huang DY
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnosis of Alzheimer's disease by feature weighted-LSTM: a preliminary study of temporal features in brain resting-state fMRI.
    Li J; Song B; Qian C
    J Integr Neurosci; 2022 Mar; 21(2):56. PubMed ID: 35364644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring eye states in functional MRI.
    Brodoehl S; Witte OW; Klingner CM
    BMC Neurosci; 2016 Jul; 17(1):48. PubMed ID: 27411785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FetNet: a recurrent convolutional network for occlusion identification in fetoscopic videos.
    Bano S; Vasconcelos F; Vander Poorten E; Vercauteren T; Ourselin S; Deprest J; Stoyanov D
    Int J Comput Assist Radiol Surg; 2020 May; 15(5):791-801. PubMed ID: 32350787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A naturalistic viewing paradigm using 360° panoramic video clips and real-time field-of-view changes with eye-gaze tracking.
    Kim HC; Jin S; Jo S; Lee JH
    Neuroimage; 2020 Aug; 216():116617. PubMed ID: 32057996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time face & eye tracking and blink detection using event cameras.
    Ryan C; O'Sullivan B; Elrasad A; Cahill A; Lemley J; Kielty P; Posch C; Perot E
    Neural Netw; 2021 Sep; 141():87-97. PubMed ID: 33873012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Multichannel 2D Convolutional Neural Network Model for Task-Evoked fMRI Data Classification.
    Hu J; Kuang Y; Liao B; Cao L; Dong S; Li P
    Comput Intell Neurosci; 2019; 2019():5065214. PubMed ID: 32082370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network.
    Fehling MK; Grosch F; Schuster ME; Schick B; Lohscheller J
    PLoS One; 2020; 15(2):e0227791. PubMed ID: 32040514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using cascade CNN-LSTM-FCNs to identify AI-altered video based on eye state sequence.
    Saealal MS; Ibrahim MZ; Mulvaney DJ; Shapiai MI; Fadilah N
    PLoS One; 2022; 17(12):e0278989. PubMed ID: 36520851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longitudinal Changes in Resting State FMRI Spectra in Children.
    Agcaoglu O; Wilson TW; Wang YP; Stephen J; Calhoun V
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3729-3732. PubMed ID: 36085989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal Activity Recognition from Surveillance Videos Using Convolutional Neural Network.
    Habib S; Hussain A; Albattah W; Islam M; Khan S; Khan RU; Khan K
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eye-LRCN: A Long-Term Recurrent Convolutional Network for Eye Blink Completeness Detection.
    de la Cruz G; Lira M; Luaces O; Remeseiro B
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5130-5140. PubMed ID: 36083963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Convolutional Neural Networks to Automatically Detect Eye-Blink Artifacts in Magnetoencephalography Without Resorting to Electrooculography.
    Garg P; Davenport E; Murugesan G; Wagner B; Whitlow C; Maldjian J; Montillo A
    Med Image Comput Comput Assist Interv; 2017 Sep; 10435():374-381. PubMed ID: 31656959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using long short term memory and convolutional neural networks for driver drowsiness detection.
    Quddus A; Shahidi Zandi A; Prest L; Comeau FJE
    Accid Anal Prev; 2021 Jun; 156():106107. PubMed ID: 33848710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Study of Deep CNN-Based Classification of Open and Closed Eyes Using a Visible Light Camera Sensor.
    Kim KW; Hong HG; Nam GP; Park KR
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28665361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.