These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 34892092)

  • 1. 3D Neural Networks for Visceral and Subcutaneous Adipose Tissue Segmentation using Volumetric Multi-Contrast MRI.
    Kafali SG; Shih SF; Li X; Chowdhury S; Loong S; Barnes S; Li Z; Wu HH
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3933-3937. PubMed ID: 34892092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated abdominal adipose tissue segmentation and volume quantification on longitudinal MRI using 3D convolutional neural networks with multi-contrast inputs.
    Kafali SG; Shih SF; Li X; Kim GHJ; Kelly T; Chowdhury S; Loong S; Moretz J; Barnes SR; Li Z; Wu HH
    MAGMA; 2024 Jul; 37(3):491-506. PubMed ID: 38300360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Deep Learning-Based Segmentation of Abdominal Adipose Tissue on Dixon MRI in Adolescents: A Prospective Population-Based Study.
    Wu T; Estrada S; van Gils R; Su R; Jaddoe VWV; Oei EHG; Klein S
    AJR Am J Roentgenol; 2024 Jan; 222(1):e2329570. PubMed ID: 37584508
    [No Abstract]   [Full Text] [Related]  

  • 4. FatSegNet: A fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI.
    Estrada S; Lu R; Conjeti S; Orozco-Ruiz X; Panos-Willuhn J; Breteler MMB; Reuter M
    Magn Reson Med; 2020 Apr; 83(4):1471-1483. PubMed ID: 31631409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abdominal fat quantification using convolutional networks.
    Schneider D; Eggebrecht T; Linder A; Linder N; Schaudinn A; Blüher M; Denecke T; Busse H
    Eur Radiol; 2023 Dec; 33(12):8957-8964. PubMed ID: 37436508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images.
    Grainger AT; Krishnaraj A; Quinones MH; Tustison NJ; Epstein S; Fuller D; Jha A; Allman KL; Shi W
    Acad Radiol; 2021 Nov; 28(11):1481-1487. PubMed ID: 32771313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fully convolutional neural network for comprehensive compartmentalization of abdominal adipose tissue compartments in MRI.
    Kway YM; Thirumurugan K; Michael N; Tan KH; Godfrey KM; Gluckman P; Chong YS; Venkataraman K; Khoo EYH; Khoo CM; Leow MK; Tai ES; Chan JK; Chan SY; Eriksson JG; Fortier MV; Lee YS; Velan SS; Feng M; Sadananthan SA
    Comput Biol Med; 2023 Dec; 167():107608. PubMed ID: 37897959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adipose Tissue Segmentation after Lung Slice Localization in Chest CT Images Based on ConvBiGRU and Multi-Module UNet.
    Lei P; Li J; Yi J; Chen W
    Biomedicines; 2024 May; 12(5):. PubMed ID: 38791023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convolutional Neural Network-Based Automated Segmentation of Skeletal Muscle and Subcutaneous Adipose Tissue on Thigh MRI in Muscular Dystrophy Patients.
    Aringhieri G; Astrea G; Marfisi D; Fanni SC; Marinella G; Pasquariello R; Ricci G; Sansone F; Sperti M; Tonacci A; Torri F; Matà S; Siciliano G; Neri E; Santorelli FM; Conte R
    J Funct Morphol Kinesiol; 2024 Jul; 9(3):. PubMed ID: 39051284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GA-Net: A geographical attention neural network for the segmentation of body torso tissue composition.
    Dai J; Liu T; Torigian DA; Tong Y; Han S; Nie P; Zhang J; Li R; Xie F; Udupa JK
    Med Image Anal; 2024 Jan; 91():102987. PubMed ID: 37837691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning method for localization and segmentation of abdominal CT.
    Dabiri S; Popuri K; Ma C; Chow V; Feliciano EMC; Caan BJ; Baracos VE; Beg MF
    Comput Med Imaging Graph; 2020 Oct; 85():101776. PubMed ID: 32862015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association between type 2 diabetes mellitus and body composition based on MRI fat fraction mapping.
    An Q; Zhang QH; Wang Y; Zhang HY; Liu YH; Zhang ZT; Zhang ML; Lin LJ; He H; Yang YF; Sun P; Zhou ZY; Song QW; Liu AL
    Front Public Health; 2024; 12():1332346. PubMed ID: 38322122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Characterization of Body Composition and Frailty with Clinically Acquired CT.
    Hu P; Huo Y; Kong D; Carr JJ; Abramson RG; Hartley KG; Landman BA
    Comput Methods Clin Appl Musculoskelet Imaging (2017); 2018; 10734():25-35. PubMed ID: 30335867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated segmentation of five different body tissues on computed tomography using deep learning.
    Pu L; Gezer NS; Ashraf SF; Ocak I; Dresser DE; Dhupar R
    Med Phys; 2023 Jan; 50(1):178-191. PubMed ID: 36008356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of baseline adipose tissue characteristics on change in adipose tissue volume during a low calorie diet in people with obesity-results from the LION study.
    Junker D; Wu M; Reik A; Raspe J; Rupp S; Han J; Näbauer SM; Wiechert M; Somasundaram A; Burian E; Waschulzik B; Makowski MR; Hauner H; Holzapfel C; Karampinos DC
    Int J Obes (Lond); 2024 Sep; 48(9):1332-1341. PubMed ID: 38926461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using a new artificial intelligence-aided method to assess body composition CT segmentation in colorectal cancer patients.
    Cao K; Yeung J; Arafat Y; Qiao J; Gartrell R; Master M; Yeung JMC; Baird PN
    J Med Radiat Sci; 2024 May; ():. PubMed ID: 38777346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. White adipose tissue distribution and amount are associated with increased white matter connectivity.
    Okudzhava L; Schulz S; Fischi-Gomez E; Girard G; Machann J; Koch PJ; Thiran JP; Münte TF; Heldmann M
    Hum Brain Mapp; 2024 Apr; 45(5):e26654. PubMed ID: 38520361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MRI-Derived Subcutaneous and Visceral Adipose Tissue Reference Values for Children Aged 6 to Under 18 Years.
    Marunowski K; Świętoń D; Bzyl W; Grzywińska M; Kaszubowski M; Bandosz P; Khrichenko D; Piskunowicz M
    Front Nutr; 2021; 8():757274. PubMed ID: 34660672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel deep learning method for large-scale analysis of bone marrow adiposity using UK Biobank Dixon MRI data.
    Morris DM; Wang C; Papanastasiou G; Gray CD; Xu W; Sjöström S; Badr S; Paccou J; Semple SI; MacGillivray T; Cawthorn WP
    Comput Struct Biotechnol J; 2024 Dec; 24():89-104. PubMed ID: 38268780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-body Composition Profiling Using a Deep Learning Algorithm: Influence of Different Acquisition Parameters on Algorithm Performance and Robustness.
    Huber FA; Chaitanya K; Gross N; Chinnareddy SR; Gross F; Konukoglu E; Guggenberger R
    Invest Radiol; 2022 Jan; 57(1):33-43. PubMed ID: 34074943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.