These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34892159)

  • 1. Axonal Conduction Delay Shapes the Precision of the Spatial Hearing in A Spiking Neural Network Model of Auditory Brainstem.
    Li BZ; Pun SH; Vai MI; Klug A; Lei TC
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4238-4241. PubMed ID: 34892159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the Influence of Axon Myelination on Sound Localization Precision Using a Spiking Neural Network Model of Auditory Brainstem.
    Li BZ; Pun SH; Vai MI; Lei TC; Klug A
    Front Neurosci; 2022; 16():840983. PubMed ID: 35360169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.
    Joris PX
    J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Test of the Stereausis Hypothesis for Sound Localization in Mammals.
    Plauška A; van der Heijden M; Borst JGG
    J Neurosci; 2017 Jul; 37(30):7278-7289. PubMed ID: 28659280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Input timing for spatial processing is precisely tuned via constant synaptic delays and myelination patterns in the auditory brainstem.
    Stange-Marten A; Nabel AL; Sinclair JL; Fischl M; Alexandrova O; Wohlfrom H; Kopp-Scheinpflug C; Pecka M; Grothe B
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):E4851-E4858. PubMed ID: 28559325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction of Inter-Aural Time Differences Using a Spiking Neuron Network Model of the Medial Superior Olive.
    Encke J; Hemmert W
    Front Neurosci; 2018; 12():140. PubMed ID: 29559886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the precision of neural computation with interaural level differences in the lateral superior olive.
    Bures Z; Marsalek P
    Brain Res; 2013 Nov; 1536():16-26. PubMed ID: 23684714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons.
    Seidl AH; Rubel EW; Barría A
    J Neurosci; 2014 Apr; 34(14):4914-9. PubMed ID: 24695710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
    Brown AD; Tollin DJ
    J Neurosci; 2016 Sep; 36(38):9908-21. PubMed ID: 27656028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal hyper-precision of brainstem neurons alters spatial sensitivity of binaural auditory processing with cochlear implants.
    Müller M; Hu H; Dietz M; Beiderbeck B; Ferreiro DN; Pecka M
    Front Neurosci; 2022; 16():1021541. PubMed ID: 36685222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic and differential myelination of axon collaterals in the mammalian auditory brainstem.
    Seidl AH; Rubel EW
    Glia; 2016 Apr; 64(4):487-94. PubMed ID: 26556176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of sound localization mechanisms in the mongolian gerbil is shaped by early acoustic experience.
    Seidl AH; Grothe B
    J Neurophysiol; 2005 Aug; 94(2):1028-36. PubMed ID: 15829592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise inhibition is essential for microsecond interaural time difference coding.
    Brand A; Behrend O; Marquardt T; McAlpine D; Grothe B
    Nature; 2002 May; 417(6888):543-7. PubMed ID: 12037566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.
    Garcia-Pino E; Gessele N; Koch U
    J Neurosci; 2017 Aug; 37(31):7403-7419. PubMed ID: 28674175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monaural interaction of excitation and inhibition in the medial superior olive of the mustached bat: an adaptation for biosonar.
    Grothe B; Vater M; Casseday JH; Covey E
    Proc Natl Acad Sci U S A; 1992 Jun; 89(11):5108-12. PubMed ID: 1594619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axonal branching patterns as sources of delay in the mammalian auditory brainstem: a re-examination.
    Karino S; Smith PH; Yin TC; Joris PX
    J Neurosci; 2011 Feb; 31(8):3016-31. PubMed ID: 21414923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound localization.
    Middlebrooks JC
    Handb Clin Neurol; 2015; 129():99-116. PubMed ID: 25726265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the delay lines in the nucleus laminaris of the chicken embryo revealed by optical imaging.
    Görlich A; Illy M; Friauf E; Wagner H; Luksch H; Löhrke S
    Neuroscience; 2010 Jun; 168(2):564-72. PubMed ID: 20394725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sound localization and delay lines--do mammals fit the model?
    McAlpine D; Grothe B
    Trends Neurosci; 2003 Jul; 26(7):347-50. PubMed ID: 12850430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.