These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34892208)

  • 1. Machine Learning Estimation of COVID-19 Social Distance using Smartphone Sensor Data.
    Semenov O; Agu E; Pahlavan K
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4452-4457. PubMed ID: 34892208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Evaluation of COVID-19 Proximity Detection Using Bluetooth LE Signal.
    Su Z; Pahlavan K; Agu E
    IEEE Access; 2021; 9():38891-38906. PubMed ID: 34812383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning-based motor assessment of Parkinson's disease using postural sway, gait and lifestyle features on crowdsourced smartphone data.
    Abujrida H; Agu E; Pahlavan K
    Biomed Phys Eng Express; 2020 Mar; 6(3):035005. PubMed ID: 33438650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress Detection via Keyboard Typing Behaviors by Using Smartphone Sensors and Machine Learning Techniques.
    Sağbaş EA; Korukoglu S; Balli S
    J Med Syst; 2020 Feb; 44(4):68. PubMed ID: 32072331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrying Position-Independent Ensemble Machine Learning Step-Counting Algorithm for Smartphones.
    Song Z; Park HJ; Thapa N; Yang JG; Harada K; Lee S; Shimada H; Park H; Park BK
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the Dynamics of Bluetooth Low Energy Based COVID-19 Risk Estimation for Educational Institutes.
    Aljohani AJ; Shuja J; Alasmary W; Alashaikh A
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobile sensors based platform of Human Physical Activities Recognition for COVID-19 spread minimization.
    Sardar AW; Ullah F; Bacha J; Khan J; Ali F; Lee S
    Comput Biol Med; 2022 Jul; 146():105662. PubMed ID: 35654623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transportation Modes Classification Using Sensors on Smartphones.
    Fang SH; Liao HH; Fei YX; Chen KH; Huang JW; Lu YD; Tsao Y
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atrial Fibrillation Detection via Accelerometer and Gyroscope of a Smartphone.
    Lahdenoja O; Hurnanen T; Iftikhar Z; Nieminen S; Knuutila T; Saraste A; Kiviniemi T; Vasankari T; Airaksinen J; Pankaala M; Koivisto T
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):108-118. PubMed ID: 28391210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Smartphone Sensor Paradata and Personalized Machine Learning Models to Infer Participants' Well-being: Ecological Momentary Assessment.
    Hart A; Reis D; Prestele E; Jacobson NC
    J Med Internet Res; 2022 Apr; 24(4):e34015. PubMed ID: 35482397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Driving event recognition using machine learning and smartphones.
    Bin Jamal Mohd Lokman EH; Goh VT; Yap TTV; Ng H
    F1000Res; 2022; 11():57. PubMed ID: 37082303
    [No Abstract]   [Full Text] [Related]  

  • 12. Parkinson's disease detection from 20-step walking tests using inertial sensors of a smartphone: Machine learning approach based on an observational case-control study.
    Juutinen M; Wang C; Zhu J; Haladjian J; Ruokolainen J; Puustinen J; Vehkaoja A
    PLoS One; 2020; 15(7):e0236258. PubMed ID: 32701955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Analysis of Gyroscope and Accelerometer Sensors for Seismocardiography-Based Wearable Pre-Ejection Period Estimation.
    Shandhi MMH; Semiz B; Hersek S; Goller N; Ayazi F; Inan OT
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2365-2374. PubMed ID: 30703050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Two-Layer Method for Sedentary Behaviors Classification Using Smartphone and Bluetooth Beacons.
    Cerón JD; López DM; Hofmann C
    Stud Health Technol Inform; 2017; 237():115-122. PubMed ID: 28479553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Smartphone Sensors for Improving Energy Expenditure Estimation.
    Pande A; Zhu J; Das AK; Zeng Y; Mohapatra P; Han JJ
    IEEE J Transl Eng Health Med; 2015; 3():2700212. PubMed ID: 27170901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smartphone-Based Activity Recognition Using Multistream Movelets Combining Accelerometer and Gyroscope Data.
    Huang EJ; Yan K; Onnela JP
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single vs. multi-sensor approach to enhanced detection of smartphone placement.
    Guiry JJ; Karr CJ; van de Ven P; Nelson J; Begale M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3691-4. PubMed ID: 25570792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MagIO: Magnetic Field Strength Based Indoor- Outdoor Detection with a Commercial Smartphone.
    Ashraf I; Hur S; Park Y
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Navigating Virtual Environments Using Leg Poses and Smartphone Sensors.
    Tsaramirsis G; Buhari SM; Basheri M; Stojmenovic M
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30642131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning Based Early Detection Framework for Preliminary Diagnosis of COVID-19 via Onboard Smartphone Sensors.
    Khaloufi H; Abouelmehdi K; Beni-Hssane A; Rustam F; Jurcut AD; Lee E; Ashraf I
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.