BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 34892210)

  • 1. A Combination of Deep Neural Networks and Physics to Solve the Inverse Problem of Burger's Equation.
    Alkhadhr S; Almekkawy M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4465-4468. PubMed ID: 34892210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradient Statistics-Based Multi-Objective Optimization in Physics-Informed Neural Networks.
    Vemuri SK; Denzler J
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics-informed neural networks based on adaptive weighted loss functions for Hamilton-Jacobi equations.
    Liu Y; Cai L; Chen Y; Wang B
    Math Biosci Eng; 2022 Sep; 19(12):12866-12896. PubMed ID: 36654026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tackling the curse of dimensionality with physics-informed neural networks.
    Hu Z; Shukla K; Karniadakis GE; Kawaguchi K
    Neural Netw; 2024 Aug; 176():106369. PubMed ID: 38754287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing neurodynamic approach with physics-informed neural networks for solving non-smooth convex optimization problems.
    Wu D; Lisser A
    Neural Netw; 2023 Nov; 168():419-430. PubMed ID: 37804745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physics-informed attention-based neural network for hyperbolic partial differential equations: application to the Buckley-Leverett problem.
    Rodriguez-Torrado R; Ruiz P; Cueto-Felgueroso L; Green MC; Friesen T; Matringe S; Togelius J
    Sci Rep; 2022 May; 12(1):7557. PubMed ID: 35534639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Second-Order Network Structure Based on Gradient-Enhanced Physics-Informed Neural Networks for Solving Parabolic Partial Differential Equations.
    Sun K; Feng X
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physics-informed neural networks for transcranial ultrasound wave propagation.
    Wang L; Wang H; Liang L; Li J; Zeng Z; Liu Y
    Ultrasonics; 2023 Jul; 132():107026. PubMed ID: 37137219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing Physics-Informed Neural Networks with Architecture Based on Analytical Modification of Numerical Methods by Solving the Problem of Modelling Processes in a Chemical Reactor.
    Tarkhov D; Lazovskaya T; Malykhina G
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FDM data driven U-Net as a 2D Laplace PINN solver.
    Maria Antony AN; Narisetti N; Gladilin E
    Sci Rep; 2023 Jun; 13(1):9116. PubMed ID: 37277366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional dynamics study: analytical solutions of modified Kordeweg-de Vries equation and coupled Burger's equations using Aboodh transform.
    Iqbal N; Hussain S; Hamza AE; Abdullah A; Mohammed WW; Yar M
    Sci Rep; 2024 Jun; 14(1):12751. PubMed ID: 38830919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wave Equation Modeling via Physics-Informed Neural Networks: Models of Soft and Hard Constraints for Initial and Boundary Conditions.
    Alkhadhr S; Almekkawy M
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The New Simulation of Quasiperiodic Wave, Periodic Wave, and Soliton Solutions of the KdV-mKdV Equation via a Deep Learning Method.
    Zhang Y; Dong H; Sun J; Wang Z; Fang Y; Kong Y
    Comput Intell Neurosci; 2021; 2021():8548482. PubMed ID: 34868298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?
    Markidis S
    Front Big Data; 2021; 4():669097. PubMed ID: 34870188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physics-informed neural wavefields with Gabor basis functions.
    Alkhalifah T; Huang X
    Neural Netw; 2024 Jul; 175():106286. PubMed ID: 38640697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New iterative method for fractional gas dynamics and coupled Burger's equations.
    Al-Luhaibi MS
    ScientificWorldJournal; 2015; 2015():153124. PubMed ID: 25884018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Error estimates and physics informed augmentation of neural networks for thermally coupled incompressible Navier Stokes equations.
    Goraya S; Sobh N; Masud A
    Comput Mech; 2023 Aug; 72(2):267-289. PubMed ID: 37583614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recipes for when physics fails: recovering robust learning of physics informed neural networks.
    Bajaj C; McLennan L; Andeen T; Roy A
    Mach Learn Sci Technol; 2023 Mar; 4(1):015013. PubMed ID: 37680302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Scalable Tanh (Stan): Multi-Scale Solutions for Physics-Informed Neural Networks.
    Gnanasambandam R; Shen B; Chung J; Yue X; Kong Z
    IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):15588-15603. PubMed ID: 37610913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solving the non-local Fokker-Planck equations by deep learning.
    Jiang S; Li X
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.