BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 34892210)

  • 41. An Adaptive Sampling Algorithm with Dynamic Iterative Probability Adjustment Incorporating Positional Information.
    Liu Y; Chen L; Chen Y; Ding J
    Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920460
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physics-informed neural networks and functional interpolation for stiff chemical kinetics.
    De Florio M; Schiassi E; Furfaro R
    Chaos; 2022 Jun; 32(6):063107. PubMed ID: 35778155
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The improved backward compatible physics-informed neural networks for reducing error accumulation and applications in data-driven higher-order rogue waves.
    Lin S; Chen Y
    Chaos; 2024 Mar; 34(3):. PubMed ID: 38526983
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PDE-LEARN: Using deep learning to discover partial differential equations from noisy, limited data.
    Stephany R; Earls C
    Neural Netw; 2024 Jun; 174():106242. PubMed ID: 38521016
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Physics-informed neural networks for hydraulic transient analysis in pipeline systems.
    Ye J; Do NC; Zeng W; Lambert M
    Water Res; 2022 Aug; 221():118828. PubMed ID: 35841787
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deep learning and inverse discovery of polymer self-consistent field theory inspired by physics-informed neural networks.
    Lin D; Yu HY
    Phys Rev E; 2022 Jul; 106(1-1):014503. PubMed ID: 35974507
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Physics-Informed Neural Networks for Solving Forward and Inverse Problems in Complex Beam Systems.
    Kapoor T; Wang H; Nunez A; Dollevoet R
    IEEE Trans Neural Netw Learn Syst; 2024 May; 35(5):5981-5995. PubMed ID: 37725741
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatial acoustic properties recovery with deep learning.
    Liu R; Gerstoft P
    J Acoust Soc Am; 2024 Jun; 155(6):3690-3701. PubMed ID: 38847594
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics.
    Ji W; Qiu W; Shi Z; Pan S; Deng S
    J Phys Chem A; 2021 Sep; 125(36):8098-8106. PubMed ID: 34463510
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Non-invasive Inference of Thrombus Material Properties with Physics-Informed Neural Networks.
    Yin M; Zheng X; Humphrey JD; Em Karniadakis G
    Comput Methods Appl Mech Eng; 2021 Mar; 375():. PubMed ID: 33414569
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of Creep Behavior of Soft Soils by Utilizing Multisensor Data Combined with Machine Learning.
    Kovačević MS; Bačić M; Librić L; Gavin K
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458873
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks.
    Berrone S; Canuto C; Pintore M; Sukumar N
    Heliyon; 2023 Aug; 9(8):e18820. PubMed ID: 37600384
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physics informed neural network for charged particles surrounded by conductive boundaries.
    Hafezianzade F; Biagooi M; Oskoee SN
    Sci Rep; 2023 Aug; 13(1):14072. PubMed ID: 37640744
    [TBL] [Abstract][Full Text] [Related]  

  • 54. HomPINNs: homotopy physics-informed neural networks for solving the inverse problems of nonlinear differential equations with multiple solutions.
    Zheng H; Huang Y; Huang Z; Hao W; Lin G
    J Comput Phys; 2024 Mar; 500():. PubMed ID: 38283188
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Solving high-dimensional partial differential equations using deep learning.
    Han J; Jentzen A; E W
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):8505-8510. PubMed ID: 30082389
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prediction of phase transition and time-varying dynamics of the (2+1)-dimensional Boussinesq equation by parameter-integrated physics-informed neural networks with phase domain decomposition.
    Liu H; Wang L; Zhang Y; Lu G; Liu L
    Phys Rev E; 2023 Oct; 108(4-2):045303. PubMed ID: 37978704
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inverse resolution of spatially varying diffusion coefficient using Physics-Informed neural networks.
    Thakur S; Esmaili E; Libring S; Solorio L; Ardekani AM
    ArXiv; 2024 Mar; ():. PubMed ID: 38495566
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physics-informed neural network for fast prediction of temperature distributions in cancerous breasts as a potential efficient portable AI-based diagnostic tool.
    Mukhmetov O; Zhao Y; Mashekova A; Zarikas V; Ng EYK; Aidossov N
    Comput Methods Programs Biomed; 2023 Dec; 242():107834. PubMed ID: 37852143
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physics-informed neural network with transfer learning (TL-PINN) based on domain similarity measure for prediction of nuclear reactor transients.
    Prantikos K; Chatzidakis S; Tsoukalas LH; Heifetz A
    Sci Rep; 2023 Oct; 13(1):16840. PubMed ID: 37803015
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Affine transformations accelerate the training of physics-informed neural networks of a one-dimensional consolidation problem.
    Mandl L; Mielke A; Seyedpour SM; Ricken T
    Sci Rep; 2023 Sep; 13(1):15566. PubMed ID: 37730743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.