These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 34892210)

  • 81. Learning the solution operator of parametric partial differential equations with physics-informed DeepONets.
    Wang S; Wang H; Perdikaris P
    Sci Adv; 2021 Oct; 7(40):eabi8605. PubMed ID: 34586842
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Accelerated Variational PDEs for Efficient Solution of Regularized Inversion Problems.
    Benyamin M; Calder J; Sundaramoorthi G; Yezzi A
    J Math Imaging Vis; 2020 Jan; 62(1):10-36. PubMed ID: 34079176
    [TBL] [Abstract][Full Text] [Related]  

  • 83. [Case of vascular Behçet's disease initially presented with Bürger's disease-like vasculitides].
    Takebayashi M; Ozaki Y; Son Y; Nagahama M; Fukuhara S
    Ryumachi; 2003 Oct; 43(4):683-9. PubMed ID: 14598663
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Wavelets based physics informed neural networks to solve non-linear differential equations.
    Uddin Z; Ganga S; Asthana R; Ibrahim W
    Sci Rep; 2023 Feb; 13(1):2882. PubMed ID: 36807303
    [TBL] [Abstract][Full Text] [Related]  

  • 85. On PDE Characterization of Smooth Hierarchical Functions Computed by Neural Networks.
    Filom K; Farhoodi R; Kording KP
    Neural Comput; 2021 Nov; 33(12):3204-3263. PubMed ID: 34710899
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Physics-constrained deep active learning for spatiotemporal modeling of cardiac electrodynamics.
    Xie J; Yao B
    Comput Biol Med; 2022 Jul; 146():105586. PubMed ID: 35751197
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Numerical solution to generalized Burgers'-Fisher equation using Exp-function method hybridized with heuristic computation.
    Malik SA; Qureshi IM; Amir M; Malik AN; Haq I
    PLoS One; 2015; 10(3):e0121728. PubMed ID: 25811858
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Multi-fidelity information fusion with concatenated neural networks.
    Pawar S; San O; Vedula P; Rasheed A; Kvamsdal T
    Sci Rep; 2022 Apr; 12(1):5900. PubMed ID: 35393511
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Determinism, well-posedness, and applications of the ultrahyperbolic wave equation in spacekime.
    Wang Y; Shen Y; Deng D; Dinov ID
    Partial Differ Equ Appl Math; 2022 Jun; 5():. PubMed ID: 36159725
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs.
    Fabiani G; Galaris E; Russo L; Siettos C
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097940
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A multilayer perceptron neural network approach for the solution of hyperbolic telegraph equations.
    Panghal S; Kumar M
    Network; 2021; 32(2-4):65-82. PubMed ID: 34974795
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Combined inverse-forward artificial neural networks for fast and accurate estimation of the diffusion coefficients of cartilage based on multi-physics models.
    Arbabi V; Pouran B; Weinans H; Zadpoor AA
    J Biomech; 2016 Sep; 49(13):2799-2805. PubMed ID: 27393413
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions.
    McFall KS; Mahan JR
    IEEE Trans Neural Netw; 2009 Aug; 20(8):1221-33. PubMed ID: 19497815
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients.
    Xia K; Zhan M; Wan D; Wei GW
    J Comput Phys; 2012 Feb; 231(4):1440-1461. PubMed ID: 22586356
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Adaptive optimal control of highly dissipative nonlinear spatially distributed processes with neuro-dynamic programming.
    Luo B; Wu HN; Li HX
    IEEE Trans Neural Netw Learn Syst; 2015 Apr; 26(4):684-96. PubMed ID: 25794375
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Physics guided neural networks for modelling of non-linear dynamics.
    Robinson H; Pawar S; Rasheed A; San O
    Neural Netw; 2022 Oct; 154():333-345. PubMed ID: 35932722
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Deep learning of material transport in complex neurite networks.
    Li A; Barati Farimani A; Zhang YJ
    Sci Rep; 2021 May; 11(1):11280. PubMed ID: 34050208
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Untrained, physics-informed neural networks for structured illumination microscopy.
    Burns Z; Liu Z
    Opt Express; 2023 Feb; 31(5):8714-8724. PubMed ID: 36859981
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model.
    Hwang S; Lee S; Hwang HJ
    Math Biosci Eng; 2021 Sep; 18(6):8524-8534. PubMed ID: 34814310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.