BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34892213)

  • 1. A Computational Model of Phosphene Appearance for Epiretinal Prostheses.
    Granley J; Beyeler M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4477-4481. PubMed ID: 34892213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axonal stimulation affects the linear summation of single-point perception in three Argus II users.
    Hou Y; Nanduri D; Granley J; Weiland JD; Beyeler M
    J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38457841
    [No Abstract]   [Full Text] [Related]  

  • 3. A model of ganglion axon pathways accounts for percepts elicited by retinal implants.
    Beyeler M; Nanduri D; Weiland JD; Rokem A; Boynton GM; Fine I
    Sci Rep; 2019 Jun; 9(1):9199. PubMed ID: 31235711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved visual performance in letter perception through edge orientation encoding in a retinal prosthesis simulation.
    Kiral-Kornek FI; OʼSullivan-Greene E; Savage CO; McCarthy C; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):066002. PubMed ID: 25307496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized single pulse stimulation strategy for retinal implants.
    Savage CO; Grayden DB; Meffin H; Burkitt AN
    J Neural Eng; 2013 Feb; 10(1):016003. PubMed ID: 23220887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation.
    Nanduri D; Fine I; Horsager A; Boynton GM; Humayun MS; Greenberg RJ; Weiland JD
    Invest Ophthalmol Vis Sci; 2012 Jan; 53(1):205-14. PubMed ID: 22110084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-based analysis of multiple electrode array stimulation for epiretinal visual prostheses.
    Mueller JK; Grill WM
    J Neural Eng; 2013 Jun; 10(3):036002. PubMed ID: 23548495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential epiretinal stimulation improves discrimination in simple shape discrimination tasks only.
    Christie B; Sadeghi R; Kartha A; Caspi A; Tenore FV; Klatzky RL; Dagnelie G; Billings S
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35613043
    [No Abstract]   [Full Text] [Related]  

  • 9. Embracing the irregular: a patient-specific image processing strategy for visual prostheses.
    Kiral-Kornek FI; Savage CO; O'Sullivan-Greene E; Burkitt AN; Grayden DB
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3563-6. PubMed ID: 24110499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Optimization of Retinal Ganglion Cell Spatial Activity in Response to Epiretinal Stimulation.
    Haji Ghaffari D; Akwaboah AD; Mirzakhalili E; Weiland JD
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2733-2741. PubMed ID: 34941514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating the perceptual effects of electrode-retina distance in prosthetic vision.
    Avraham D; Yitzhaky Y
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35561665
    [No Abstract]   [Full Text] [Related]  

  • 12. Axonal stimulation affects the linear summation of single-point perception in three Argus II users.
    Hou Y; Nanduri D; Granley J; Weiland JD; Beyeler M
    medRxiv; 2023 Dec; ():. PubMed ID: 37546858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restoring Color Perception to the Blind: An Electrical Stimulation Strategy of Retina in Patients with End-stage Retinitis Pigmentosa.
    Yue L; Castillo J; Gonzalez AC; Neitz J; Humayun MS
    Ophthalmology; 2021 Mar; 128(3):453-462. PubMed ID: 32858064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards biologically plausible phosphene simulation for the differentiable optimization of visual cortical prostheses.
    van der Grinten M; de Ruyter van Steveninck J; Lozano A; Pijnacker L; Rueckauer B; Roelfsema P; van Gerven M; van Wezel R; Güçlü U; Güçlütürk Y
    Elife; 2024 Feb; 13():. PubMed ID: 38386406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brightness as a function of current amplitude in human retinal electrical stimulation.
    Greenwald SH; Horsager A; Humayun MS; Greenberg RJ; McMahon MJ; Fine I
    Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5017-25. PubMed ID: 19608533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of brain scans to create realistic phosphene maps for cortical visual prosthesis simulation studies.
    Wang HZ; Wong YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-specific computational models of retinal prostheses.
    Kish KE; Yuan A; Weiland JD
    Sci Rep; 2023 Dec; 13(1):22271. PubMed ID: 38097732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal prosthetic vision simulation: temporal aspects.
    Avraham D; Jung JH; Yitzhaky Y; Peli E
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34359062
    [No Abstract]   [Full Text] [Related]  

  • 19. The Influence of Phosphene Synchrony in Driving Object Binding in a Simulation of Artificial Vision.
    Meital-Kfir N; Pezaris JS
    Invest Ophthalmol Vis Sci; 2023 Dec; 64(15):5. PubMed ID: 38051263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating Phosphene Locations Using Eye Movements of Suprachoroidal Retinal Prosthesis Users.
    Titchener SA; Goossens J; Kvansakul J; Nayagam DAX; Kolic M; Baglin EK; Ayton LN; Abbott CJ; Luu CD; Barnes N; Kentler WG; Shivdasani MN; Allen PJ; Petoe MA
    Transl Vis Sci Technol; 2023 Mar; 12(3):20. PubMed ID: 36943168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.