These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 34892226)

  • 1. Design and Pilot Evaluation of a Prototype Sensorized Trunk Exoskeleton.
    Hass D; Miller BA; Dai B; Novak D; Gorsic M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4537-4541. PubMed ID: 34892226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Pilot Study of Varying Thoracic and Abdominal Compression in a Reconfigurable Trunk Exoskeleton During Different Activities.
    Gorsic M; Regmi Y; Johnson AP; Dai B; Novak D
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1585-1594. PubMed ID: 31502962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the HeroWear Apex back-assist exosuit during multiple brief tasks.
    Goršič M; Song Y; Dai B; Novak D
    J Biomech; 2021 Sep; 126():110620. PubMed ID: 34293602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occupational arm-support and back-support exoskeletons elicit changes in reactive balance after slip-like and trip-like perturbations on a treadmill.
    Dooley S; Kim S; Nussbaum MA; Madigan ML
    Appl Ergon; 2024 Feb; 115():104178. PubMed ID: 37984085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of a Back-Support Exoskeleton to Assist Carrying Activities.
    Lazzaroni M; Chini G; Draicchio F; Di Natali C; Caldwell DG; Ortiz J
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Muscle Coordination Changes Caused by the Use of an Occupational Passive Lumbar Exoskeleton in Laboratory Conditions.
    Iranzo S; Belda-Lois JM; Martinez-de-Juan JL; Prats-Boluda G
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the Auxivo CarrySuit occupational exoskeleton when carrying front and side loads on a treadmill.
    Goršič M; Novak VD
    J Biomech; 2023 Jul; 156():111692. PubMed ID: 37348177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams.
    Näf MB; Koopman AS; Baltrusch S; Rodriguez-Guerrero C; Vanderborght B; Lefeber D
    Front Robot AI; 2018; 5():72. PubMed ID: 33500951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Subjective Responses of Low Back Pain Patients and Asymptomatic Controls to Use of Spinal Exoskeleton during Simple Load Lifting Tasks: A Pilot Study.
    Kozinc Ž; Babič J; Šarabon N
    Int J Environ Res Public Health; 2020 Dec; 18(1):. PubMed ID: 33379316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic and Static Assistive Strategies for a Tailored Occupational Back-Support Exoskeleton: Assessment on Real Tasks Carried Out by Railway Workers.
    Di Natali C; Poliero T; Fanti V; Sposito M; Caldwell DG
    Bioengineering (Basel); 2024 Feb; 11(2):. PubMed ID: 38391658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field study on the use and acceptance of an arm support exoskeleton in plastering.
    de Vries AW; Baltrusch SJ; de Looze MP
    Ergonomics; 2023 Oct; 66(10):1622-1632. PubMed ID: 36546707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Systematic Review on Lower-Limb Industrial Exoskeletons: Evaluation Methods, Evidence, and Future Directions.
    Kuber PM; Alemi MM; Rashedi E
    Ann Biomed Eng; 2023 Aug; 51(8):1665-1682. PubMed ID: 37248409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. User preference optimization for control of ankle exoskeletons using sample efficient active learning.
    Lee UH; Shetty VS; Franks PW; Tan J; Evangelopoulos G; Ha S; Rouse EJ
    Sci Robot; 2023 Oct; 8(83):eadg3705. PubMed ID: 37851817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control strategies for trunk exoskeletons based on motion intent recognition: A review.
    Yuan R; Wang Q; Xu H; Yu H; Shi P
    NeuroRehabilitation; 2024; 54(4):575-597. PubMed ID: 38943405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic Evaluation of a Knee Exoskeleton Misalignment Compensation Mechanism Using a Robotic Dummy Leg.
    Massardi S; Rodriguez-Cianca D; Cenciarini M; Costa DC; Font-Llagunes JM; Moreno JC; Lancini M; Torricelli D
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating cognitive and physical work performance: A comparative study of an active and passive industrial back-support exoskeleton.
    Govaerts R; Turcksin T; Vanderborght B; Roelands B; Meeusen R; De Pauw K; De Bock S
    Wearable Technol; 2023; 4():e27. PubMed ID: 38487761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IMU-based human activity recognition and payload classification for low-back exoskeletons.
    Pesenti M; Invernizzi G; Mazzella J; Bocciolone M; Pedrocchi A; Gandolla M
    Sci Rep; 2023 Jan; 13(1):1184. PubMed ID: 36681711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insect exoskeletons react to hypergravity.
    Stamm K; Dirks JH
    Proc Biol Sci; 2023 Dec; 290(2012):20232141. PubMed ID: 38052238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Objective and subjective evaluation of a passive low-back exoskeleton during simulated logistics tasks.
    Mitterlehner L; Li YX; Wolf M
    Wearable Technol; 2023; 4():e24. PubMed ID: 38487776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and evaluation of a parallel mechanism for wearable lumbar support exoskeleton.
    Wang Q; Shi P; He C; Yu H
    Work; 2023; 76(2):637-651. PubMed ID: 36872816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.