These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34892226)

  • 41. Exploring New Potential Applications for Hand Exoskeletons: Power Grip to Assist Human Standing.
    Diez JA; Santamaria V; Khan MI; Catalán JM; Garcia-Aracil N; Agrawal SK
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374744
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Short-Term Effects of a Passive Spinal Exoskeleton on Functional Performance, Discomfort and User Satisfaction in Patients with Low Back Pain.
    Kozinc Ž; Baltrusch S; Houdijk H; Šarabon N
    J Occup Rehabil; 2021 Mar; 31(1):142-152. PubMed ID: 32356222
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Using passive or active back-support exoskeletons during a repetitive lifting task: influence on cardiorespiratory parameters.
    Schwartz M; Desbrosses K; Theurel J; Mornieux G
    Eur J Appl Physiol; 2022 Dec; 122(12):2575-2583. PubMed ID: 36074202
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Statically vs dynamically balanced gait: Analysis of a robotic exoskeleton compared with a human.
    Barbareschi G; Richards R; Thornton M; Carlson T; Holloway C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6728-31. PubMed ID: 26737837
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Changes in the distribution of muscle activity when using a passive trunk exoskeleton depend on the type of working task: A high-density surface EMG study.
    Dos Anjos FV; Ghislieri M; Cerone GL; Pinto TP; Gazzoni M
    J Biomech; 2022 Jan; 130():110846. PubMed ID: 34749163
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exoskeleton plantarflexion assistance for elderly.
    Galle S; Derave W; Bossuyt F; Calders P; Malcolm P; De Clercq D
    Gait Posture; 2017 Feb; 52():183-188. PubMed ID: 27915222
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of the Auxivo CarrySuit occupational exoskeleton when carrying front and side loads on a treadmill.
    Goršič M; Novak VD
    J Biomech; 2023 Jul; 156():111692. PubMed ID: 37348177
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reliability of a battery of tests for functional evaluation of trunk exoskeletons.
    Kozinc Ž; Baltrusch S; Houdijk H; Šarabon N
    Appl Ergon; 2020 Jul; 86():103117. PubMed ID: 32342882
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Trunk muscle activity patterns in a person with spinal cord injury walking with different un-powered exoskeletons: A case study.
    Guan X; Liu Y; Gao L; Ji L; Wang R; Yang M; Ji R
    J Rehabil Med; 2016 Apr; 48(4):390-5. PubMed ID: 26936517
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Perspectives of End Users on the Potential Use of Trunk Exoskeletons for People With Low-Back Pain: A Focus Group Study.
    Baltrusch SJ; Houdijk H; van Dieën JH; van Bennekom CAM; de Kruif AJTCM
    Hum Factors; 2020 May; 62(3):365-376. PubMed ID: 31914327
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SPEXOR passive spinal exoskeleton decreases metabolic cost during symmetric repetitive lifting.
    Baltrusch SJ; van Dieën JH; Koopman AS; Näf MB; Rodriguez-Guerrero C; Babič J; Houdijk H
    Eur J Appl Physiol; 2020 Feb; 120(2):401-412. PubMed ID: 31828480
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation Methods and Measurement Challenges for Industrial Exoskeletons.
    Li-Baboud YS; Virts A; Bostelman R; Yoon S; Rahman A; Rhode L; Ahmed N; Shah M
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420770
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):751-759. PubMed ID: 30908231
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neural and biomechanical tradeoffs associated with human-exoskeleton interactions.
    Zhu Y; Weston EB; Mehta RK; Marras WS
    Appl Ergon; 2021 Oct; 96():103494. PubMed ID: 34126572
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design of a Payload Adjustment Device for an Unpowered Lower-Limb Exoskeleton.
    Yun J; Kang O; Joe HM
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208291
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of a passive back-support exoskeleton during in-bed patient handling tasks.
    Zheng L; Alluri CSV; Hawke AL; Hwang J
    Int J Occup Saf Ergon; 2024 Aug; ():1-8. PubMed ID: 39154219
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A preliminary investigation on upper limb exoskeleton assistance for simulated agricultural tasks.
    Harith HH; Mohd MF; Nai Sowat S
    Appl Ergon; 2021 Sep; 95():103455. PubMed ID: 33991852
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exoskeleton Application to Military Manual Handling Tasks.
    Proud JK; Lai DTH; Mudie KL; Carstairs GL; Billing DC; Garofolini A; Begg RK
    Hum Factors; 2022 May; 64(3):527-554. PubMed ID: 33203237
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effectivity of a passive arm support exoskeleton in reducing muscle activation and perceived exertion during plastering activities.
    de Vries AW; Krause F; de Looze MP
    Ergonomics; 2021 Jun; 64(6):712-721. PubMed ID: 33402050
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design and Preliminary Validation of a Lightweight Powered Exoskeleton During Level Walking for Persons With Paraplegia.
    Wang D; Hu B; Chen W; Meng Q; Liu S; Ma S; Li X; Yu H
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2112-2123. PubMed ID: 34623269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.