BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34892276)

  • 1. A 3-DOF Bionic Waist Joint for Humanoid Robot.
    Wang Y; Li W; Cao T; Togo S; Yokoi H; Jiang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4765-4768. PubMed ID: 34892276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-motion bionic soft hexapod robot driven by self-sensing controlled twisted artificial muscles.
    Zhou D; Zuo W; Tang X; Deng J; Liu Y
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Modular Cooperative Wall-Climbing Robot Based on Internal Soft Bone.
    Huang W; Hu W; Zou T; Xiao J; Lu P; Li H
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Speed Handling Robot with Bionic End-Effector for Large Glass Substrate in Clean Environment.
    Liu Z; Chen Y; Song H; Xing Z; Tian H; Shan X
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safety Evaluation and Experimental Study of a New Bionic Muscle Cable-Driven Lower Limb Rehabilitation Robot.
    Wang YL; Wang KY; Wang KC; Mo ZJ
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33302462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Snake-Inspired Layer-Driven Continuum Robot.
    Qin G; Ji A; Cheng Y; Zhao W; Pan H; Shi S; Song Y
    Soft Robot; 2022 Aug; 9(4):788-797. PubMed ID: 34550801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Control of Lightweight Bionic Arm Driven by Soft Twisted and Coiled Artificial Muscles.
    Yang SY; Kim K; Ko JU; Seo S; Hwang ST; Park JH; Jung HS; Gong YJ; Suk JW; Rodrigue H; Moon H; Koo JC; Nam JD; Choi HR
    Soft Robot; 2023 Feb; 10(1):17-29. PubMed ID: 35255238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Joint Bionic Mechanism Based on Non-Circular Gear Drive.
    Liu D; Zhang T; Cao Y
    Biomimetics (Basel); 2023 Jun; 8(3):. PubMed ID: 37504160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a six degree-of-freedom robotic system for hip in vitro biomechanical testing.
    Goldsmith MT; Rasmussen MT; Turnbull TL; Trindade CAC; LaPrade RF; Philippon MJ; Wijdicks CA
    J Biomech; 2015 Nov; 48(15):4093-4100. PubMed ID: 26537889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimised robot-based system for the exploration of elastic joint properties.
    Frey M; Burgkart R; Regenfelder F; Riener R
    Med Biol Eng Comput; 2004 Sep; 42(5):674-8. PubMed ID: 15503969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on control strategy of pneumatic soft bionic robot based on improved CPG.
    Zhao W; Zhang Y; Lim KM; Yang L; Wang N; Peng L
    PLoS One; 2024; 19(7):e0306320. PubMed ID: 38968177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
    Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H
    Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-inspired upper limb soft exoskeleton to reduce stroke-induced complications.
    Li N; Yang T; Yu P; Chang J; Zhao L; Zhao X; Elhajj IH; Xi N; Liu L
    Bioinspir Biomim; 2018 Aug; 13(6):066001. PubMed ID: 30088477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic biomechanical model for assessing and monitoring robot-assisted upper-limb therapy.
    Abdullah HA; Tarry C; Datta R; Mittal GS; Abderrahim M
    J Rehabil Res Dev; 2007; 44(1):43-62. PubMed ID: 17551857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study.
    Masia L; Casadio M; Giannoni P; Sandini G; Morasso P
    J Neuroeng Rehabil; 2009 Dec; 6():44. PubMed ID: 19968873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement and description of three-dimensional shoulder range of motion with degrees of freedom interactions.
    Haering D; Raison M; Begon M
    J Biomech Eng; 2014 Aug; 136(8):. PubMed ID: 24828544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of three force-position hybrid control methods for a robot-based biological joint-testing system.
    Hsieh HJ; Hu CC; Lu TW; Lu HL; Kuo MY; Kuo CC; Hsu HC
    Biomed Eng Online; 2016 Jun; 15(1):62. PubMed ID: 27268070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic Calibration of a Parallel 2-UPS/RRR Ankle Rehabilitation Robot.
    Dong M; Kong Y; Li J; Fan W
    J Healthc Eng; 2020; 2020():3053629. PubMed ID: 32963748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-based methodology for a kinematic and kinetic analysis of unconstrained, but reproducible upper extremity movement.
    Popovic N; Williams S; Schmitz-Rode T; Rau G; Disselhorst-Klug C
    J Biomech; 2009 Jul; 42(10):1570-1573. PubMed ID: 19442979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.