These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 34892289)

  • 1. Design of a bioinspired cable driven actuator with clutched elastic elements for the ankle.
    Picolli LH; Rocha PR; Forner-Cordero A; Moura RT
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4824-4827. PubMed ID: 34892289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of the Clutched Variable Parallel Elastic Actuator (CVPEA) for Lower Limb Exoskeletons.
    Li Y; Li Z; Penzlin B; Tang Z; Liu Y; Guan X; Ji L; Leonhardt S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4436-4439. PubMed ID: 31946850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 4. Actuation system modelling and design optimization for an assistive exoskeleton for disabled and elderly with series and parallel elasticity.
    Ghaffar A; Dehghani-Sanij AA; Xie SQ
    Technol Health Care; 2023; 31(4):1129-1151. PubMed ID: 36970915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, Modelling, and Experimental Evaluation of a Compact Elastic Actuator for a Gait Assisting Exoskeleton.
    Herodotou P; Wang S
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():331-336. PubMed ID: 31374651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force and Torque Characterization in the Actuation of a Walking-Assistance, Cable-Driven Exosuit.
    Rodríguez Jorge D; Bermejo García J; Jayakumar A; Lorente Moreno R; Agujetas Ortiz R; Romero Sánchez F
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping.
    Farris DJ; Hicks JL; Delp SL; Sawicki GS
    J Exp Biol; 2014 Nov; 217(Pt 22):4018-28. PubMed ID: 25278469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actuation Selection for Assistive Exoskeletons: Matching Capabilities to Task Requirements.
    Calanca A; Toxiri S; Costanzi D; Sartori E; Vicario R; Poliero T; Natali CD; Caldwell DG; Fiorini P; Ortiz J
    IEEE Trans Neural Syst Rehabil Eng; 2020 Sep; 28(9):2053-2062. PubMed ID: 32746325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive Simulation of Human Walking Augmented by a Powered Ankle Exoskeleton.
    Nguyen VQ; Umberger BR; Sup FC
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():53-58. PubMed ID: 31374606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Validation of a Lightweight Hip Exoskeleton Driven by Series Elastic Actuator With Two-Motor Variable Speed Transmission.
    Zhang T; Ning C; Li Y; Wang M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2456-2466. PubMed ID: 36001514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linking the mechanics and energetics of hopping with elastic ankle exoskeletons.
    Farris DJ; Sawicki GS
    J Appl Physiol (1985); 2012 Dec; 113(12):1862-72. PubMed ID: 23065760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a Purely Mechanical Sensor-Controller Integrated System for Walking Assistance on an Ankle-Foot Exoskeleton.
    Wang X; Guo S; Qu H; Song M
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31331126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spring uses in exoskeleton actuation design.
    Wang S; van Dijk W; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975471. PubMed ID: 22275669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting walking response to ankle exoskeletons using data-driven models.
    Rosenberg MC; Banjanin BS; Burden SA; Steele KM
    J R Soc Interface; 2020 Oct; 17(171):20200487. PubMed ID: 33050782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle-inspired bi-planar cable routing: a novel framework for designing cable driven lower limb rehabilitation exoskeletons (C-LREX).
    Prasad R; El-Rich M; Awad MI; Agrawal SK; Khalaf K
    Sci Rep; 2024 Mar; 14(1):5158. PubMed ID: 38431744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statically vs dynamically balanced gait: Analysis of a robotic exoskeleton compared with a human.
    Barbareschi G; Richards R; Thornton M; Carlson T; Holloway C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6728-31. PubMed ID: 26737837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hopping with degressive spring stiffness in a full-leg exoskeleton lowers metabolic cost compared with progressive spring stiffness and hopping without assistance.
    Allen SP; Grabowski AM
    J Appl Physiol (1985); 2019 Aug; 127(2):520-530. PubMed ID: 31219770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Control of a Series-Parallel Elastic Actuator for a Weight-Bearing Exoskeleton Robot.
    Wang T; Zheng T; Zhao S; Sui D; Zhao J; Zhu Y
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.