These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34892305)

  • 1. Assistive Sliding Mode Control of a Rehabilitation Robot with Automatic Weight Adjustment.
    Hashemi A; McPhee J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4891-4896. PubMed ID: 34892305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voluntary Assist-as-Needed Controller for an Ankle Power-Assist Rehabilitation Robot.
    Yang R; Shen Z; Lyu Y; Zhuang Y; Li L; Song R
    IEEE Trans Biomed Eng; 2023 Jun; 70(6):1795-1803. PubMed ID: 37015472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation.
    Yang T; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):238-247. PubMed ID: 31603825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and control of a lower limb rehabilitation robot considering undesirable torques of the patient's limb.
    Almaghout K; Tarvirdizadeh B; Alipour K; Hadi A
    Proc Inst Mech Eng H; 2020 Dec; 234(12):1457-1471. PubMed ID: 32777995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust control of a cable-driven rehabilitation robot for lower and upper limbs.
    Seyfi NS; Keymasi Khalaji A
    ISA Trans; 2022 Jun; 125():268-289. PubMed ID: 34294462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction.
    Jarrett C; McDaid AJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):976-986. PubMed ID: 28278475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation.
    Pérez-San Lázaro R; Salgado I; Chairez I
    ISA Trans; 2021 Mar; 109():218-228. PubMed ID: 33077173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.
    van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Voluntary and Adaptive Control Strategy for Ankle Rehabilitation Robot].
    Shen Z; Zhang L; Su Y; Xing H; Li B
    Zhongguo Yi Liao Qi Xie Za Zhi; 2024 Jul; 48(4):385-391. PubMed ID: 39155250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sliding-Mode Nonlinear Predictive Control of Brain-Controlled Mobile Robots.
    Li H; Bi L; Yi J
    IEEE Trans Cybern; 2022 Jun; 52(6):5419-5431. PubMed ID: 33232253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Configuration-Dependent Optimal Impedance Control of an Upper Extremity Stroke Rehabilitation Manipulandum.
    Ghannadi B; Sharif Razavian R; McPhee J
    Front Robot AI; 2018; 5():124. PubMed ID: 33501003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive control of a serial-in-parallel robotic rehabilitation device.
    Pehlivan AU; Sergi F; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650412. PubMed ID: 24187231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.
    Niu J; Yang Q; Chen G; Song R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation.
    Dalla Gasperina S; Longatelli V; Braghin F; Pedrocchi A; Gandolla M
    Front Neurorobot; 2021; 15():734130. PubMed ID: 35115915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton.
    Han S; Wang H; Tian Y; Christov N
    ISA Trans; 2020 Feb; 97():171-181. PubMed ID: 31399252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized sliding mode controller for trajectory tracking of flexible joints three-link manipulator with noise in input and output.
    Azeez MI; Abdelhaleem AMM; Elnaggar S; Moustafa KAF; Atia KR
    Sci Rep; 2023 Aug; 13(1):12518. PubMed ID: 37532737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive and predictive control of a simulated robot arm.
    Tolu S; Vanegas M; Garrido JA; Luque NR; Ros E
    Int J Neural Syst; 2013 Jun; 23(3):1350010. PubMed ID: 23627657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel hybrid adaptive controller for manipulation in complex perturbation environments.
    Smith AM; Yang C; Ma H; Culverhouse P; Cangelosi A; Burdet E
    PLoS One; 2015; 10(6):e0129281. PubMed ID: 26029916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle Swarm Optimization aided PID gait controller design for a humanoid robot.
    Kashyap AK; Parhi DR
    ISA Trans; 2021 Aug; 114():306-330. PubMed ID: 33358185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model based control of a rehabilitation robot for lower extremities.
    Xie XL; Hou ZG; Li PF; Ji C; Zhang F; Tan M; Wang H; Hu G
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2263-6. PubMed ID: 21097222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.