BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 34892306)

  • 1. Wearable Sensor-Based Step Length Estimation During Overground Locomotion Using a Deep Convolutional Neural Network.
    Jin H; Kang I; Choi G; Molinaro DD; Young AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4897-4900. PubMed ID: 34892306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validity and reliability of a commercial wearable sensor system for measuring spatiotemporal gait parameters in a post-stroke population: the effects of walking speed and asymmetry.
    Lanotte F; Shin SY; O'Brien MK; Jayaraman A
    Physiol Meas; 2023 Aug; 44(8):. PubMed ID: 37557187
    [No Abstract]   [Full Text] [Related]  

  • 3. Gait regularity assessed by wearable sensors: Comparison between accelerometer and gyroscope data for different sensor locations and walking speeds in healthy subjects.
    Scalera GM; Ferrarin M; Rabuffetti M
    J Biomech; 2020 Dec; 113():110115. PubMed ID: 33221581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IMU-Based Real-Time Estimation of Gait Phase Using Multi-Resolution Neural Networks.
    Tang L; Shushtari M; Arami A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors.
    Liu K; Liu Y; Ji S; Gao C; Zhang S; Fu J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Lower Extremity Multi-Joint Angles during Overground Walking by Using a Single IMU with a Low Frequency Based on an LSTM Recurrent Neural Network.
    Sung J; Han S; Park H; Cho HM; Hwang S; Park JW; Youn I
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-Based Step Length Estimation Using a Pendant-Integrated Mobility Sensor.
    Lueken M; Loeser J; Weber N; Bollheimer C; Leonhardt S; Ngo C
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2655-2665. PubMed ID: 34874862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity and repeatability of inertial measurement units for measuring gait parameters.
    Washabaugh EP; Kalyanaraman T; Adamczyk PG; Claflin ES; Krishnan C
    Gait Posture; 2017 Jun; 55():87-93. PubMed ID: 28433867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepBBWAE-Net: A CNN-RNN Based Deep SuperLearner for Estimating Lower Extremity Sagittal Plane Joint Kinematics Using Shoe-Mounted IMU Sensors in Daily Living.
    Hossain MSB; Dranetz J; Choi H; Guo Z
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3906-3917. PubMed ID: 35385394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Walking-Speed-Adaptive Gait Phase Estimation for Wearable Robots.
    Choi S; Ko C; Kong K
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applying deep neural networks and inertial measurement unit in recognizing irregular walking differences in the real world.
    Hu B; Li S; Chen Y; Kavi R; Coppola S
    Appl Ergon; 2021 Oct; 96():103414. PubMed ID: 34087702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Base of Support, Step Length and Stride Width Estimation during Walking Using an Inertial and Infrared Wearable System.
    Rossanigo R; Caruso M; Bertuletti S; Deriu F; Knaflitz M; Della Croce U; Cereatti A
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning-Based Energy Expenditure Estimation in Assisted and Non-Assisted Gait Using Inertial, EMG, and Heart Rate Wearable Sensors.
    Lopes JM; Figueiredo J; Fonseca P; Cerqueira JJ; Vilas-Boas JP; Santos CP
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-World Gait Speed Estimation Using Wrist Sensor: A Personalized Approach.
    Soltani A; Dejnabadi H; Savary M; Aminian K
    IEEE J Biomed Health Inform; 2020 Mar; 24(3):658-668. PubMed ID: 31059461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Accuracy and Precision of Gait Spatio-Temporal Parameters Extracted from an Instrumented Sock during Treadmill and Overground Walking in Healthy Subjects and Patients with a Foot Impairment Secondary to Psoriatic Arthritis.
    Walha R; Lebel K; Gaudreault N; Dagenais P; Cereatti A; Della Croce U; Boissy P
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of Spatio-Temporal Parameters of Gait and Posture of Visually Impaired People Using Wearable Sensors.
    Reyes Leiva KM; Gato MÁC; Olmedo JJS
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of Muscle Forces of Lower Limbs Based on CNN-LSTM Neural Network and Wearable Sensor System.
    Liu K; Liu Y; Ji S; Gao C; Fu J
    Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Gait Event Detection with Adaptive Frequency Oscillators from a Single Head-Mounted IMU.
    Tomc M; Matjačić Z
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons.
    Su B; Liu YX; Gutierrez-Farewik EM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.