BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34892316)

  • 1. Kinematics Constraint Modeling for Flexible Robots based on Deep Learning
    Omisore OM; Wang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4940-4943. PubMed ID: 34892316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deeply-learnt damped least-squares (DL-DLS) method for inverse kinematics of snake-like robots.
    Omisore OM; Han S; Ren L; Elazab A; Hui L; Abdelhamid T; Azeez NA; Wang L
    Neural Netw; 2018 Nov; 107():34-47. PubMed ID: 30241968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Concurrent Framework for Constrained Inverse Kinematics of Minimally Invasive Surgical Robots.
    Colan J; Davila A; Fozilov K; Hasegawa Y
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot.
    Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L
    Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion and Trajectory Constraints Control Modeling for Flexible Surgical Robotic Systems.
    Omisore OM; Han S; Al-Handarish Y; Du W; Duan W; Akinyemi TO; Wang L
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32272641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating exploration for deep reinforcement learning of concentric tube robot control.
    Iyengar K; Dwyer G; Stoyanov D
    Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1157-1165. PubMed ID: 32506349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic and Workspace Analysis of the Master Robot in the Sina
    Aghanouri M; Kheradmand P; Mousavi M; Moradi H; Mirbagheri A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4777-4780. PubMed ID: 34892279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments.
    Song S; Zhang C; Liu L; Meng MQ
    Int J Comput Assist Radiol Surg; 2018 Feb; 13(2):241-251. PubMed ID: 28983750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-generation robotic surgery--from the aspect of surgical robots developed by industry.
    Nakadate R; Arata J; Hashizume M
    Minim Invasive Ther Allied Technol; 2015 Feb; 24(1):2-7. PubMed ID: 25627433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel compliant surgical robot: Preliminary design analysis.
    Kapsalyamov A; Hussain S; Jamwal PK
    Math Biosci Eng; 2019 Dec; 17(3):1944-1958. PubMed ID: 32233517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Endonasal Endoscopic Transsphenoidal (EET) surgery pathway and workspace for path guiding robot design.
    Chalongwongse S; Chumnanvej S; Suthakorn J
    Asian J Surg; 2019 Aug; 42(8):814-822. PubMed ID: 30709589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery.
    Wang Z; Majewicz Fey A
    Int J Comput Assist Radiol Surg; 2018 Dec; 13(12):1959-1970. PubMed ID: 30255463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery.
    Abidi H; Gerboni G; Brancadoro M; Fras J; Diodato A; Cianchetti M; Wurdemann H; Althoefer K; Menciassi A
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 29205769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and path tracking control of a continuum robot for maxillary sinus surgery.
    Cao Y; Liu Z; Liu Z; Wang S; Xie L
    Int J Comput Assist Radiol Surg; 2023 Apr; 18(4):753-761. PubMed ID: 36580208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination design of drive mechanism considering delay of surgical robot.
    Sekine R; Miura S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators.
    Xu W; Chen J; Lau HYK; Ren H
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27647806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Performance Verification of a Novel RCM Mechanism for a Minimally Invasive Surgical Robot.
    Shi H; Liang Z; Zhang B; Wang H
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of Translated Frame-Based Approach for Forward Kinematics in a Radiosurgical Snake-Like Robot.
    Omisore OM; Han SP; Ren LX; Zhao ZC; Wang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3669-3672. PubMed ID: 30441168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Needle Grasp and Entry Port Selection for Automatic Execution of Suturing Tasks in Robotic Minimally Invasive Surgery.
    Liu T; Çavuşoğlu MC
    IEEE Trans Autom Sci Eng; 2016 Apr; 13(2):552-563. PubMed ID: 27158248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.