These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 34892316)
1. Kinematics Constraint Modeling for Flexible Robots based on Deep Learning Omisore OM; Wang L Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4940-4943. PubMed ID: 34892316 [TBL] [Abstract][Full Text] [Related]
2. Deeply-learnt damped least-squares (DL-DLS) method for inverse kinematics of snake-like robots. Omisore OM; Han S; Ren L; Elazab A; Hui L; Abdelhamid T; Azeez NA; Wang L Neural Netw; 2018 Nov; 107():34-47. PubMed ID: 30241968 [TBL] [Abstract][Full Text] [Related]
3. A Concurrent Framework for Constrained Inverse Kinematics of Minimally Invasive Surgical Robots. Colan J; Davila A; Fozilov K; Hasegawa Y Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992038 [TBL] [Abstract][Full Text] [Related]
4. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot. Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713 [TBL] [Abstract][Full Text] [Related]
5. Motion and Trajectory Constraints Control Modeling for Flexible Surgical Robotic Systems. Omisore OM; Han S; Al-Handarish Y; Du W; Duan W; Akinyemi TO; Wang L Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32272641 [TBL] [Abstract][Full Text] [Related]
6. Investigating exploration for deep reinforcement learning of concentric tube robot control. Iyengar K; Dwyer G; Stoyanov D Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1157-1165. PubMed ID: 32506349 [TBL] [Abstract][Full Text] [Related]
7. Kinematic and Workspace Analysis of the Master Robot in the Sina Aghanouri M; Kheradmand P; Mousavi M; Moradi H; Mirbagheri A Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4777-4780. PubMed ID: 34892279 [TBL] [Abstract][Full Text] [Related]
8. Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments. Song S; Zhang C; Liu L; Meng MQ Int J Comput Assist Radiol Surg; 2018 Feb; 13(2):241-251. PubMed ID: 28983750 [TBL] [Abstract][Full Text] [Related]
9. Active constraint control for the surgical robotic platform with concentric connector joints. Morad S; Ulbricht C; Harkin P; Chan J; Parker K; Vaidyanathan R Med Eng Phys; 2024 Oct; 132():104236. PubMed ID: 39428139 [TBL] [Abstract][Full Text] [Related]
10. Next-generation robotic surgery--from the aspect of surgical robots developed by industry. Nakadate R; Arata J; Hashizume M Minim Invasive Ther Allied Technol; 2015 Feb; 24(1):2-7. PubMed ID: 25627433 [TBL] [Abstract][Full Text] [Related]
12. Analysis of Endonasal Endoscopic Transsphenoidal (EET) surgery pathway and workspace for path guiding robot design. Chalongwongse S; Chumnanvej S; Suthakorn J Asian J Surg; 2019 Aug; 42(8):814-822. PubMed ID: 30709589 [TBL] [Abstract][Full Text] [Related]
13. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery. Wang Z; Majewicz Fey A Int J Comput Assist Radiol Surg; 2018 Dec; 13(12):1959-1970. PubMed ID: 30255463 [TBL] [Abstract][Full Text] [Related]
14. Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery. Abidi H; Gerboni G; Brancadoro M; Fras J; Diodato A; Cianchetti M; Wurdemann H; Althoefer K; Menciassi A Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 29205769 [TBL] [Abstract][Full Text] [Related]
15. Design and path tracking control of a continuum robot for maxillary sinus surgery. Cao Y; Liu Z; Liu Z; Wang S; Xie L Int J Comput Assist Radiol Surg; 2023 Apr; 18(4):753-761. PubMed ID: 36580208 [TBL] [Abstract][Full Text] [Related]
16. Combination design of drive mechanism considering delay of surgical robot. Sekine R; Miura S Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083757 [TBL] [Abstract][Full Text] [Related]
17. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators. Xu W; Chen J; Lau HYK; Ren H Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27647806 [TBL] [Abstract][Full Text] [Related]
18. Design of a new haptic device and experiments in minimally invasive surgical robot. Wang T; Pan B; Fu Y; Wang S; Ai Y Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504 [TBL] [Abstract][Full Text] [Related]
19. Design and Performance Verification of a Novel RCM Mechanism for a Minimally Invasive Surgical Robot. Shi H; Liang Z; Zhang B; Wang H Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850959 [TBL] [Abstract][Full Text] [Related]
20. Adaptation of Translated Frame-Based Approach for Forward Kinematics in a Radiosurgical Snake-Like Robot. Omisore OM; Han SP; Ren LX; Zhao ZC; Wang L Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3669-3672. PubMed ID: 30441168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]