These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34892316)

  • 21. Needle Grasp and Entry Port Selection for Automatic Execution of Suturing Tasks in Robotic Minimally Invasive Surgery.
    Liu T; Çavuşoğlu MC
    IEEE Trans Autom Sci Eng; 2016 Apr; 13(2):552-563. PubMed ID: 27158248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robot-assisted flexible needle insertion using universal distributional deep reinforcement learning.
    Tan X; Lee Y; Chng CB; Lim KB; Chui CK
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):341-349. PubMed ID: 31768886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A learning robot for cognitive camera control in minimally invasive surgery.
    Wagner M; Bihlmaier A; Kenngott HG; Mietkowski P; Scheikl PM; Bodenstedt S; Schiepe-Tiska A; Vetter J; Nickel F; Speidel S; Wörn H; Mathis-Ullrich F; Müller-Stich BP
    Surg Endosc; 2021 Sep; 35(9):5365-5374. PubMed ID: 33904989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application study of medical robots in vascular intervention.
    Lu WS; Xu WY; Zhang J; Liu D; Wang DM; Jia P; Li ZC; Wang TM; Zhang DP; Tian ZM; Zeng Y
    Int J Med Robot; 2011 Sep; 7(3):361-6. PubMed ID: 21732523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinematic analysis and navigation method of a cable-driven continuum robot used for minimally invasive surgery.
    Qi F; Ju F; Bai D; Wang Y; Chen B
    Int J Med Robot; 2019 Aug; 15(4):e2007. PubMed ID: 31050135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Uncalibrated Positioning Method for Puncture Robots Based on Optical Navigation].
    Wang Q; Feng T; Yang R; Zhan Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2023 Nov; 47(6):591-597. PubMed ID: 38086712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Open core control software for surgical robots.
    Arata J; Kozuka H; Kim HW; Takesue N; Vladimirov B; Sakaguchi M; Tokuda J; Hata N; Chinzei K; Fujimoto H
    Int J Comput Assist Radiol Surg; 2010 May; 5(3):211-20. PubMed ID: 20033506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Introduction: the rise of the robots in spinal surgery.
    Theodore N; Arnold PM; Mehta AI
    Neurosurg Focus; 2018 Jul; 45(VideoSuppl1):Intro. PubMed ID: 29963916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Collaborative Robotic Assistant Platform for Endonasal Surgery: Preliminary In-Vitro Trials.
    Muñoz VF; Garcia-Morales I; Fraile-Marinero JC; Perez-Turiel J; Muñoz-Garcia A; Bauzano E; Rivas-Blanco I; Sabater-Navarro JM; Fuente E
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33810419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU.
    Zhao X; Dou L; Su Z; Liu N
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29547515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Condition-Invariant Robot Localization Using Global Sequence Alignment of Deep Features.
    Oh J; Han C; Lee S
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fully body visual self-modeling of robot morphologies.
    Chen B; Kwiatkowski R; Vondrick C; Lipson H
    Sci Robot; 2022 Jul; 7(68):eabn1944. PubMed ID: 35857575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The development and error analysis of a kinematic parameters based spatial positioning method for an orthopedic navigation robot system.
    Pei B; Zhu G; Wang Y; Qiao H; Chen X; Wang B; Li X; Zhang W; Liu W; Fan Y
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27723229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Leveraging vision and kinematics data to improve realism of biomechanic soft tissue simulation for robotic surgery.
    Wu JY; Kazanzides P; Unberath M
    Int J Comput Assist Radiol Surg; 2020 May; 15(5):811-818. PubMed ID: 32323207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Novel Extensible Continuum Robot with Growing Motion Capability Inspired by Plant Growth for Path-Following in Transoral Laryngeal Surgery.
    Xu Y; Song D; Zhang Z; Wang S; Shi C
    Soft Robot; 2024 Feb; 11(1):171-182. PubMed ID: 37792330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinematics and workspace analysis of 4SPRR-SPR parallel robots.
    Luo L; Hou L; Zhang Q; Wei Y; Wu Y
    PLoS One; 2021; 16(1):e0239150. PubMed ID: 33471792
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Virtual Sensor for Kinematic Estimation of Flexible Links in Parallel Robots.
    Bengoa P; Zubizarreta A; Cabanes I; Mancisidor A; Pinto C; Mata S
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28832510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinematic design considerations for minimally invasive surgical robots: an overview.
    Kuo CH; Dai JS; Dasgupta P
    Int J Med Robot; 2012 Jun; 8(2):127-45. PubMed ID: 22228671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Social Robot Navigation Tasks: Combining Machine Learning Techniques and Social Force Model.
    Gil Ó; Garrell A; Sanfeliu A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.