These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34892325)

  • 21. Rapid prediction of MRI-induced RF heating of active implantable medical devices using machine learning.
    Vu J; Sanpitak P; Bhusal B; Jiang F; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnetic resonance conditionality of abandoned leads from active implantable medical devices at 1.5 T.
    Wang Y; Guo R; Hu W; Zheng J; Wang Q; Jiang J; Kurpad KKN; Kaula N; Long S; Chen J; Kainz W
    Magn Reson Med; 2022 Jan; 87(1):394-408. PubMed ID: 34378816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3-Tesla MRI in patients with fully implanted deep brain stimulation devices: a preliminary study in 10 patients.
    Sammartino F; Krishna V; Sankar T; Fisico J; Kalia SK; Hodaie M; Kucharczyk W; Mikulis DJ; Crawley A; Lozano AM
    J Neurosurg; 2017 Oct; 127(4):892-898. PubMed ID: 28009238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RF-induced heating for active implantable medical devices in dual parallel leads configurations at 1.5 T MRI.
    Hu W; Guo R; Wang Q; Zheng J; Tsang J; Kainz W; Long S; Chen J
    Magn Reson Med; 2023 Aug; 90(2):686-698. PubMed ID: 37036364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of Machine learning to predict RF heating of cardiac leads during magnetic resonance imaging at 1.5 T and 3 T: A simulation study.
    Chen X; Zheng C; Golestanirad L
    J Magn Reson; 2023 Apr; 349():107384. PubMed ID: 36842429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Device Configuration and Patient's Body Composition Significantly Affect RF Heating of Deep Brain Stimulation Implants During MRI: An Experimental Study at 1.5T and 3T.
    Bhusal B; Nguyen BT; Vu J; Elahi B; Rosenow J; Nolt MJ; Pilitsis J; DiMarzio M; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5192-5197. PubMed ID: 33019155
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wirelessly interfacing sensor-equipped implants and MR scanners for improved safety and imaging.
    Silemek B; Seifert F; Petzold J; Brühl R; Ittermann B; Winter L
    Magn Reson Med; 2023 Dec; 90(6):2608-2626. PubMed ID: 37533167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction of magnetic resonance imaging-related heating in deep brain stimulation leads using a lead management device.
    Baker KB; Tkach J; Hall JD; Nyenhuis JA; Shellock FG; Rezai AR
    Neurosurgery; 2005 Oct; 57(4 Suppl):392-7; discussion 392-7. PubMed ID: 16234691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simple geometric analysis method for measuring and mitigating RF induced currents on Deep Brain Stimulation leads by multichannel transmission/reception.
    Eryaman Y; Kobayashi N; Moen S; Aman J; Grant A; Vaughan JT; Molnar G; Park MC; Vitek J; Adriany G; Ugurbil K; Harel N
    Neuroimage; 2019 Jan; 184():658-668. PubMed ID: 30273715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Implant-friendly MRI of deep brain stimulation electrodes at 7 T.
    Sadeghi-Tarakameh A; DelaBarre L; Zulkarnain NIH; Harel N; Eryaman Y
    Magn Reson Med; 2023 Dec; 90(6):2627-2642. PubMed ID: 37533196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of the extracranial deep brain stimulation lead on radiofrequency heating at 9.4 Tesla (400.2 MHz).
    Shrivastava D; Abosch A; Hanson T; Tian J; Gupte A; Iaizzo PA; Vaughan JT
    J Magn Reson Imaging; 2010 Sep; 32(3):600-7. PubMed ID: 20815057
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of MRI RF electromagnetic field induced heating near leads of cochlear implants.
    Zeng Q; Wang Q; Zheng J; Kainz W; Chen J
    Phys Med Biol; 2018 Jul; 63(13):135020. PubMed ID: 29893289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Technical note: System uncertainty on four- and eight-channel parallel RF transmission for safe MRI of deep brain stimulation devices.
    Yang B; Chen CH; Graham SJ
    Med Phys; 2023 Sep; 50(9):5913-5919. PubMed ID: 37469178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging.
    McElcheran CE; Yang B; Anderson KJ; Golenstani-Rad L; Graham SJ
    PLoS One; 2015; 10(8):e0134379. PubMed ID: 26237218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Local SAR near deep brain stimulation (DBS) electrodes at 64 and 127 MHz: A simulation study of the effect of extracranial loops.
    Golestanirad L; Angelone LM; Iacono MI; Katnani H; Wald LL; Bonmassar G
    Magn Reson Med; 2017 Oct; 78(4):1558-1565. PubMed ID: 27797157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Safety and image quality at 7T MRI for deep brain stimulation systems: Ex vivo study with lead-only and full-systems.
    Bhusal B; Stockmann J; Guerin B; Mareyam A; Kirsch J; Wald LL; Nolt MJ; Rosenow J; Lopez-Rosado R; Elahi B; Golestanirad L
    PLoS One; 2021; 16(9):e0257077. PubMed ID: 34492090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artifacts Can Be Deceiving: The Actual Location of Deep Brain Stimulation Electrodes Differs from the Artifact Seen on Magnetic Resonance Images.
    Nuzov NB; Bhusal B; Henry KR; Jiang F; Vu J; Rosenow JM; Pilitsis JG; Elahi B; Golestanirad L
    Stereotact Funct Neurosurg; 2023; 101(1):47-59. PubMed ID: 36529124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine learning-based prediction of MRI-induced power absorption in the tissue in patients with simplified deep brain stimulation lead models.
    Vu J; Nguyen BT; Bhusal B; Baraboo J; Rosenow J; Bagci U; Bright MG; Golestanirad L
    IEEE Trans Electromagn Compat; 2021 Oct; 63(5):1757-1766. PubMed ID: 34898696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Feasibility of using linearly polarized rotating birdcage transmitters and close-fitting receive arrays in MRI to reduce SAR in the vicinity of deep brain simulation implants.
    Golestanirad L; Keil B; Angelone LM; Bonmassar G; Mareyam A; Wald LL
    Magn Reson Med; 2017 Apr; 77(4):1701-1712. PubMed ID: 27059266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiofrequency heating of retained cardiac leads during magnetic resonance imaging at 1.5 T and 3 T.
    Nguyen BT; Bhusal B; Fawcett K; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4986-4989. PubMed ID: 34892327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.